Applications of a q-Differential Operator to a Class of Harmonic Mappings Defined by q-Mittag–Leffler Functions
Abstract
:1. Introduction
- (1)
- For we get differential operator defined by Elhaddad et al. [8].
- (2)
- For and we get Al-Oboudi operator [33].
- (3)
- For and we get q-Salagean operator [34].
- (4)
- For and we get Salagean operator [35].
- (5)
- For and we get Mittag–Leffler function defined in [36].
- 1.
- defined by Khan et al. in [9].
- 2.
- studied by Dziok [37].
- 3.
- defined by Jahangiri in [38].
- 4.
- introduced by Jahangiri in [39].
2. A Set of Lemmas
3. Main Results
3.1. Coefficient Bounds for the Class of Harmonic Functions
3.2. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponnusamy, S.; Silverman, H. Complex Variables with Applications; Birkhäuser: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Ganigi, M.D.; Sarangi, S.M. Univalent Functions with Positive Coefficients. Tamkang J. Math. 1994, 25, 225–230. [Google Scholar] [CrossRef]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. AI Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Sheil-Small, T. Constants for Planar Harmonic Mappings. J. Lond. Math. Soc. 1990, 2–42, 237–248. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions I. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Wiman, A. Uber den Fundamental satz in der Theorie der Funktionen E(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. On certain subclasses of analytic functions involving differential operator. Jnanabha 2018, 48, 55–64. [Google Scholar]
- Khan, M.G.; Ahmad, B.; Abdeljawad, T. Applications of a differential operator to a class of harmonic mappings defined by Mittag–Leffler functions. AIMS Math. 2000, 5, 6782–6799. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions. In Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. RACSAM 2018, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-Analogue of Differential Subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef]
- Noor, K.I.; Arif, M. Mapping properties of an integral operator. Appl. Math. Lett. 2012, 25, 1826–1829. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babes-Bolyai Mat. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some General Classes of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order a. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Jahangiri, J.M. Harmonic univalent functions defined by q-calculus operators. Int. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Porwal, S.; Gupta, A. An application of q-calculus to harmonic univalent functions. J. Qual. Meas. Anal. 2018, 14, 81–90. [Google Scholar]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Khan, N.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. Some applications of q-difference operator involving a family of meromorphic harmonic functions. Adv. Differ. Equ. 2021, 2021, 471. [Google Scholar] [CrossRef]
- Srivastava, H.; Khan, N.; Khan, S.; Ahmad, Q.; Khan, B. A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Math. 2021, 7, 667–680. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge Univ. Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Sharma, S.K.; Jain, R. On some properties of generalized q-Mittag Leffler function. Math. Aeterna 2014, 4, 613–619. [Google Scholar]
- Srivastava, H.M. Certain q-polynomial expansions fot functions of several variables. IMA J. Appl. Math. 1983, 30, 315–323. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of Univalent Functions. In Complex Analysis, Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013; Springer: Berlin/Heidelberg, Germany, 1983; pp. 362–372. [Google Scholar]
- Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of Integral Operators Involving Mittag–Leffler Functions. Appl. Math. Inf. Sci. 2017, 11, 635–641. [Google Scholar] [CrossRef]
- Dziok, J. On Janowski harmonic functions. J. Appl. Anal. 2015, 21, 99–107. [Google Scholar] [CrossRef]
- Jahangiri, J.M. Coefficient bounds and univalence criteria for harmonic functions with negative coefficients. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1998, 52, 57–66. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disc. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, S. Convolutions in Geometric Function Theory-Seminaire de Mathematiques Superieures; Gaetan Morin Editeur Ltee: Boucherville, QC, Canada, 1982. [Google Scholar]
- Silverman, H. Harmonic Univalent Functions with Negative Coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef]
- Krein, M.; Milman, D. On the extreme points of regularly convex sets. Stud. Math. 1940, 9, 133–138. [Google Scholar] [CrossRef]
- Montel, P. Sur les families de functions analytiques qui admettent des valeurs exceptionelles dansun domaine. Ann. Sci. Ec. Norm. Super. 1992, 23, 487–535. [Google Scholar]
- Attiya, A. Some applications of Mittag–Leffler function in the unit disc. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Hussain, S.; Naeem, M.; Mahmood, T.; Khan, S. A Subclass of Univalent Functions A Subclass of Univalent Functions Associated with q-Analogue of Choi-Saigo-Srivastava operator. Hacet. J. Math. Stat. 2020, 49, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Al-shbeil, I.; Khan, S.; Khan, N.; Haq, W.U.; Gong, J. Applications of a q-Differential Operator to a Class of Harmonic Mappings Defined by q-Mittag–Leffler Functions. Symmetry 2022, 14, 1905. https://doi.org/10.3390/sym14091905
Khan MF, Al-shbeil I, Khan S, Khan N, Haq WU, Gong J. Applications of a q-Differential Operator to a Class of Harmonic Mappings Defined by q-Mittag–Leffler Functions. Symmetry. 2022; 14(9):1905. https://doi.org/10.3390/sym14091905
Chicago/Turabian StyleKhan, Mohammad Faisal, Isra Al-shbeil, Shahid Khan, Nazar Khan, Wasim Ul Haq, and Jianhua Gong. 2022. "Applications of a q-Differential Operator to a Class of Harmonic Mappings Defined by q-Mittag–Leffler Functions" Symmetry 14, no. 9: 1905. https://doi.org/10.3390/sym14091905