Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions
Abstract
:1. Introduction
2. Existence of a Unique Solution for the Integral Equation with Symmetric and Nonsymmetrical Kernel
- (i)
- The kernels and satisfy the following conditions: where and are two constants, assume .
- (ii)
- is a constant.
- (iii)
- The function satisfies the following conditions:
- (iv)
- The function is bounded and satisfies the following:
3. Method of Solution for the Main Problem
4. Convergence Analysis
5. Application and Numerical Results
6. Conclusions and Remarks
- Under some conditions, Equation (1) has a unique solution in the space .
- After applying the proposed method, a two-dimensional integral equation with a symmetric and nonsymmetrical kernel of the second kind tends to result in an algebraic system of nonlinear equations.
- A nonlinear system of algebraic equations has a solution.
- Three illustrative examples are provided to evaluate and validate the effectiveness and dependability of the proposed method. Tables and Figures are used to show the numerical results. For example, Figure 1, Figure 5 and Figure 9 contained the numerical solution of Examples 1, 2 and 3, respectively, for different values of and K. Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 formed the absolute errors of each example with different values of x and y.
- In Example 2, from Table 4 at , the error is as high as possible at point , and its value is . Likewise, the error begins to decrease, and when the value of , its value is .
- In Example 3, the error decreases as S and K increase, where the maximum value of the error at for is , while for , the minimum value of the error is .
- In general, the error obtained by the proposed method decreases when the number of increases.
7. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdou, M.A.; Soliman, A.A.; Abdel-Aty, M.A. On a discussion of Volterra—Fredholm integral equation with discontinuous kernel. J. Egypt. Math. Soc. 2020, 28, 11. [Google Scholar] [CrossRef] [Green Version]
- Bakhshayesh, S.J. Discontinuous Galerkin approximations for Volterra integral equations of the first kind with convolution kernel. Indian J. Sci. Technol. 2015, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Brezinski, C.; Redivo-Zalglia, M. Extrapolation methods for the numerical solution of nonlinear Fredholm integral equations. J. Integral Equat. Appl. 2019, 31, 29–57. [Google Scholar] [CrossRef]
- Nasr, M.E.; Abdel-Aty, M.A. Analytical discussion for the mixed integral equations. J. Fixed Point Theory Appl. 2018, 20, 115. [Google Scholar] [CrossRef]
- Nasr, M.E.; Abdel-Aty, M.A. A new techniques applied to Volterra–Fredholm integral equations with discontinuous kernel. J. Comput. Anal. Appl. 2021, 29, 11–24. [Google Scholar]
- Mirzaee, F. Numerical solution of system of linear integral equations via improvement of block-pulse functions. J. Math. Model 2016, 4, 133–159. [Google Scholar]
- Abdou, M.A.; Nasr, M.E.; Abdel-Aty, M.A. A study of normality and continuity for mixed integral equations. J. Fixed Point Theory Appl. 2018, 20, 5. [Google Scholar] [CrossRef]
- Hannabou, M.; Bouaouid, M.; Hilal, K. Existence and uniqueness of solutions for a fractional hybrid system with nonseparated integral boundary hybrid conditions. J. Funct. Spaces 2022, 2022, 3271626. [Google Scholar] [CrossRef]
- Golberg, M.A.; Chen, C.S. Discrete Projection Methods for Integral Equation; Computational Mechanics Publications: Southampton, UK; Boston, MA, USA, 1997. [Google Scholar]
- Hassan, T.S.; Odinaev, I.; Shah, R.; Weera, W. Dynamical analysis of fractional integro-differential equations. Mathematics 2022, 10, 2071. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Alghamdi, A.M.; Gala, S.; Ragusa, M.A. On the regularity criterion on one velocity component for the micropolar fluid equations. Math. Model. Anal. 2023, 28, 271–284. [Google Scholar] [CrossRef]
- Elzaki, T.M.; Alamri, A.S. Note on new homotopy perturbation method for solving nonlinear integral equations. J. Math. Comput. Sci. 2016, 6, 149–155. [Google Scholar]
- Hafez, R.M.; Youssri, Y.H. Spectral Legendre-Chebyshev treatment of 2D linear and nonlinear mixed Volterra-Fredholm integral equation. Math. Sci. Lett. 2020, 9, 37–47. [Google Scholar]
- Gouyandeh, Z.; Allahviranloo, T.; Armand, A. Numerical Solution of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Tau-Collocation Method with Convergence Analysis. J. Comput. Appl. Math 2016, 308, 435–446. [Google Scholar] [CrossRef]
- Katani, R. Numerical solution of the Fredholm integral equations with a quadrature method. SeMA J. 2019, 76, 449–452. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q. Taylor polynomial method and error estimation for a kind of mixed Volterra-Fredholm integral equations. Appl. Math. Comput. 2014, 229, 53–59. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, W. An Efficient Algorithm for Solving Nonlinear Volterra-Fredholm Integral Equations. Appl. Math. Comput. 2015, 259, 614–619. [Google Scholar] [CrossRef]
- Al-Bugami, A.M. Numerical treating of mixed Integral equation two-dimensional in surface cracks in finite layers of materials. Adv. Math. Phys. 2022, 25, 3398175. [Google Scholar] [CrossRef]
- Alipour, M.; Baleanu, D.; Babaei, F. Hybrid Bernstein block-pulse functions method for second kind integral equations with convergence analysis. Abstr. Appl. Anal. 2014, 2014, 623763. [Google Scholar] [CrossRef]
- Masouri, Z. Numerical expansion-iterative method for solving second kind Volterra and Fredholm integral equations using block-pulse functions. Adv. Comput. Tech. Electromagn 2021, 20, 7–17. [Google Scholar] [CrossRef]
- Hashemzadeh, E.; Maleknejad, K.; Basirat, B. Hybrid functions approach for the nonlinear Volterra–Fredholm integral equations. Proc. Comput. Sci 2011, 3, 1189–1194. [Google Scholar] [CrossRef] [Green Version]
- Marzban, H.R.; Tabrizidooz, H.R.; Razzaghi, M. A composite collection method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equation. Commun. Nonlinear Sci. Numer. 2011, 16, 1186–1194. [Google Scholar] [CrossRef]
- Alhazmi, S.E.; Mahdy, A.M.; Abdou, M.A.; Mohamed, D.S. Computational Techniques for Solving Mixed (1+1) Dimensional Integral Equations with Strongly Symmetric Singular Kernel. Symmetry 2023, 15, 1284. [Google Scholar] [CrossRef]
- Azeem, M.; Farman, M.; Akgl, A.; Sen, M.D.L. Fractional order operator for symmetric analysis of cancer model on stem cells with chemotherapy. Symmetry 2023, 15, 533. [Google Scholar] [CrossRef]
- Attia, N.; Akgl, A.; Alqahtani, R.T. Extension of the reproducing kernel Hilbert space method’s application range to include some important fractional differential equations. Symmetry 2023, 15, 532. [Google Scholar] [CrossRef]
- Liaqat, M.I.; Akgul, A.; Sen, M.D.L.; Bayram, M. Approximate and exact solutions in the sense of conformable derivatives of quantum mechanics models using a novel algorithm. Symmetry 2023, 15, 744. [Google Scholar] [CrossRef]
- Datta, K.B.; Mohan, B.M. Orthogonal Function in Systems and Control; World Scientific: Singapore, 1995; Volume 9. [Google Scholar]
- Mashayekhi, S.; Razzaghi, M. Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 2016, 315, 169–181. [Google Scholar] [CrossRef]
- Mirzaee, F.; Alipour, S.; Samadyar, N. Numerical solution based on hybrid of Block-pulse and parabolic functions for solving a system of nonlinear stochastic Ito-Volterra integral equations of fractional order. J. Comput. Appl. Math. 2019, 349, 157–171. [Google Scholar] [CrossRef]
- Mohammadi, F.; Moradi, L.; Baleanu, D.; Jajarmi, A. A hybrid functions numerical scheme for fractional optimal control problems: Application to non analytic dynamic systems. J. Vib. Control 2017, 24, 5030–5043. [Google Scholar] [CrossRef]
- Maleknejad, K.; Hashemizadeh, E. Numerical solution of the dynamic model of a chemical reactor by hybrid functions. Procedia. Comput. Sci. 2011, 3, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Hesameddini, E.; Riahi, M. Hybrid Legendre Block-pulse functions method for solving partial differential equations with non-local integral boundary conditions. J. Inf. Optim. Sci. 2019, 40, 1391–1403. [Google Scholar] [CrossRef]
- Sahu, P.K.; Saha Ray, S. Hybrid Legendre Block-pulse functions for the numerical solutions of system of nonlinear Fredholm-Hammerstein integral equations. Appl. Math. Comput. 2015, 270, 871–878. [Google Scholar] [CrossRef]
- Rafiei, Z.; Kafash, B.; Karbasi, S.M. State-control parameterization method based on using hybrid functions of Block-pulse and Legendre polynomials for optimal control of linear time delay systems. Appl. Math. Model 2017, 45, 1008–1019. [Google Scholar] [CrossRef]
- Saha Ray, S.; Singh, S. Numerical solution of stochastic Volterra-Fredholm integral equations by hybrid Legendre Block-pulse functions. Int. J. Nonlinear Sci. Numer. 2018, 19, 289–297. [Google Scholar] [CrossRef]
- Ali, F.; Ali, J.; Rodríguez-López, R. Approximation of fixed points and the solution of a nonlinear integral equation. Nonlinear Funct. Anal. Appl. 2021, 26, 869–885. [Google Scholar]
- Bousselse, M.; Kim, D.; Kim, J.K. solvability and asymptotic Behavior of solutions for some nonlinear integral. Nonlinear Funct. Anal. Appl. 2023, 28, 57–79. [Google Scholar]
- El-Deeb, S.M.; Murugusundaramoorthy, G.A. Alburaikan, Bi-Univalent Functions Connected with the Mittag-Leffler-Type Borel Distribution Based Upon the Legendre Polynomials. Nonlinear Funct. Anal. Appl. 2022, 27, 331–347. [Google Scholar]
- Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley and Sons, Inc.: New York, NY, USA, 1989. [Google Scholar]
- Okeke, G.A.; Kim, J.K. Fixed point theorems in complex valued banach spaces with applications to a nonlinear integral equation. Nonlinear Funct. Anal. Appl. 2020, 25, 411–436. [Google Scholar] [CrossRef] [Green Version]
(0, 0) | 5.62845 | 3.25447 | 2.36512 | 1.32654 |
(0.1, 0.1) | 2.51405 | 2.36524 | 1.36524 | 6.32514 |
(0.2, 0.2) | 5.62103 | 2.36985 | 5.36214 | 8.22551 |
(0.3, 0.3) | 2.02154 | 3.58412 | 8.32541 | 6.32165 |
(0.4, 0.4) | 4.58721 | 3.65413 | 2.21345 | 1.32114 |
(0.5, 0.5) | 7.36212 | 2.23651 | 3.65221 | 2.36985 |
(0.6, 0.6) | 1.36521 | 1.65214 | 7.32651 | 2.92541 |
(0.7, 0.7) | 5.26512 | 1.36524 | 6.32541 | 6.32548 |
(0.8, 0.8) | 5.62514 | 4.36210 | 8.36251 | 7.32614 |
(0.9, 0.9) | 5.65214 | 6.25489 | 5.32658 | 1.36524 |
6.2103 | 6.53210 | 5.32658 | 1.36524 |
(0, 0) | 3.20514 | 5.32641 | 6.32141 | 2.36541 |
(0.1, 0.1) | 3.25481 | 9.32541 | 5.32187 | 3.65874 |
(0.2, 0.2) | 3.32541 | 3.21554 | 2.36414 | 7.36584 |
(0.3, 0.3) | 4.32641 | 5.32654 | 5.32684 | 3.36241 |
(0.4, 0.4) | 5.36854 | 6.36524 | 8.32546 | 6.32584 |
(0.5, 0.5) | 6.93154 | 7.1.365 | 6.32541 | 8.65241 |
(0.6, 0.6) | 1.32511 | 3.21547 | 9.99215 | 4.32516 |
(0.7, 0.7) | 4.32658 | 4.36561 | 1.32154 | 8.69854 |
(0.8, 0.8) | 5.32666 | 5.76524 | 2.34541 | 4.36215 |
(0.9, 0.9) | 6.32541 | 7.96525 | 3.25456 | 1.05214 |
6.32541 | 7.96525 | 3.25456 | 1.05214 |
(0, 0) | 9.32484 | 8.32544 | 5.21432 | 1.23698 |
(0.1, 0.1) | 7.62514 | 3.52147 | 2.81647 | 5.21478 |
(0.2, 0.2) | 5.03698 | 3.62149 | 3.89759 | 2.98547 |
(0.3, 0.3) | 1.20584 | 5.20147 | 5.07896 | 4.69857 |
(0.4, 0.4) | 2.96521 | 5.36987 | 4.36985 | 3.21458 |
(0.5, 0.5) | 4.36514 | 5.58741 | 5.20142 | 3.69521 |
(0.6, 0.6) | 4.96587 | 6.36925 | 1.25847 | 4.25871 |
(0.7, 0.7) | 1.32548 | 2.01321 | 6.87452 | 3.02587 |
(0.8, 0.8) | 3.02584 | 3.47585 | 1.01024 | 4.08754 |
(0.9, 0.9) | 5.01478 | 1.75214 | 4.36954 | 5.31231 |
5.01478 | 1.75214 | 4.36954 | 5.31231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abusalim, S.M.; Abdou, M.A.; Abdel-Aty, M.A.; Nasr, M.E. Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions. Symmetry 2023, 15, 1408. https://doi.org/10.3390/sym15071408
Abusalim SM, Abdou MA, Abdel-Aty MA, Nasr ME. Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions. Symmetry. 2023; 15(7):1408. https://doi.org/10.3390/sym15071408
Chicago/Turabian StyleAbusalim, Sahar M., Mohamed A. Abdou, Mohamed A. Abdel-Aty, and Mohamed E. Nasr. 2023. "Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions" Symmetry 15, no. 7: 1408. https://doi.org/10.3390/sym15071408
APA StyleAbusalim, S. M., Abdou, M. A., Abdel-Aty, M. A., & Nasr, M. E. (2023). Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions. Symmetry, 15(7), 1408. https://doi.org/10.3390/sym15071408