Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64-6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64-6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64-6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64-6198.

Free full text 


Logo of cnsdrugrevLink to Publisher's site
CNS Drug Rev. 2007 Mar; 13(1): 107–136.
PMCID: PMC6494153
PMID: 17461893

The Pharmacology of Ro 64‐6198, a Systemically Active, Nonpeptide NOP Receptor (Opiate Receptor‐Like 1, ORL‐1) Agonist with Diverse Preclinical Therapeutic Activity

ABSTRACT

The NOP receptor (formerly referred to as opiate receptor‐like 1, ORL‐1, LC132, OP4, or NOP1) is a G protein–coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann‐La Roche reported on the selective, nonpeptide NOP agonist Ro 64‐6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64‐6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64‐6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64‐6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64‐6198.

Keywords: Anxiety, Cough, Nociceptin, Opiate receptor‐like 1, Opioid receptors, Orphanin FQ, Pain, Ro 64‐6198, Substance‐related disorders

Full Text

The Full Text of this article is available as a PDF (153K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adam G, Cesura AM, Galley G, Jenck F, Monsma FJ Jr., Rover S, Wichmann J (2001) 8‐substituted‐1,3,8‐triazaspiro[4.5]decan‐4‐one derivatives. EP 0 856 514 B1 European Patent Office.
  • Bauer M (2004) The Effects of J113397, an orphanin/nociceptin FQ receptor antagonist, on the limbic‐hypothalamic‐pituitary‐adrenal axis. J Undergrad Res 6: http://www.clas.ufl.edu/jur/200410/papers/paper_bauer.html [Google Scholar]
  • Bigoni R, Calo' G, Rizzi A, Guerrini R, De Risi C, Hashimoto Y, Hashiba E, Lambert DG, Regoli D (2000) In vitro characterization of J‐113397, a non‐peptide nociceptin/orphanin FQ receptor antagonist. Naunyn Schmiedeberg's Arch Pharmacol 361:565‐568. [Abstract] [Google Scholar]
  • Blakley GG, Pohorecky LA, Benjamin D (2004) Behavioral and endocrine changes following antisense oligonucleotide‐induced reduction in the rat NOP receptor. Psychopharmacology (Berl) 171:421‐428. [Abstract] [Google Scholar]
  • Briscini L, Corradini L, Ongini E, Bertorelli R (2002) Up‐regulation of ORL‐1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol 447:59‐65. [Abstract] [Google Scholar]
  • Broer BM, Gurrath M, Holtje HD (2003) Molecular modelling studies on the ORL1‐receptor and ORL1‐agonists. J Comput Aided Mol Des 17:739‐754. [Abstract] [Google Scholar]
  • Bytner B, Huang YH, Yu LC, Lundeberg T, Nylander I, Rosen A (2001) Nociceptin/orphanin FQ into the rat periaqueductal gray decreases the withdrawal latency to heat and loading, an effect reversed by (Nphe(1))nociceptin(1‐13)NH(2). Brain Res 922:118‐124. [Abstract] [Google Scholar]
  • Calo' G, Rizzi A, Bigoni R, Guerrini R, Salvadori S, Regoli D (2002) Pharmacological profile of nociceptin/orphanin FQ receptors. Clin Exp Pharmacol Physiol 29:223‐228. [Abstract] [Google Scholar]
  • Calo G, Rizzi A, Marzola G, Guerrini R, Salvadori S, Beani L, Regoli D, Bianchi C (1998) Pharmacological characterization of the nociceptin receptor mediating hyperalgesia in the mouse tail withdrawal assay. Br J Pharmacol 125:373‐378. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chen LX, Wang ZZ, Wu H, Fang Q, Chen Y, Wang R (2002) Effects of nociceptin (13–17) in pain modulation at supraspinal level in mice. Neurosci Lett 331:95‐98. [Abstract] [Google Scholar]
  • Chiou LC, Chuang KC, Wichmann J, Adam G (2004) Ro 64‐6198 [(1S,3aS)‐8‐(2,3,3a,4,5,6‐Hexahydro‐1H‐phenalen‐1‐yl)‐1‐phenyl‐1,3,8‐triaza‐spiro[4.5]decan‐4‐one] acts differently from nociceptin/orphanin FQ in rat periaqueductal gray slices. J Pharmacol Exp Ther 311:645‐651. [Abstract] [Google Scholar]
  • Chung KF (2005) Drugs to suppress cough. Expert Opin Investig Drugs 14:19‐27. [Abstract] [Google Scholar]
  • Ciccocioppo R, Angeletti S, Panocka I, Massi M (2000a) Nociceptin/orphanin FQ and drugs of abuse. Peptides 21:1071‐1080. [Abstract] [Google Scholar]
  • Ciccocioppo R, Angeletti S, Sanna PP, Weiss F, Massi M (2000b) Effect of nociceptin/orphanin FQ on the rewarding properties of morphine. Eur J Pharmacol 404:153‐159. [Abstract] [Google Scholar]
  • Ciccocioppo R, Biondini M, Antonelli L, Wichmann J, Jenck F, Massi M (2002) Reversal of stress‐ and CRF‐induced anorexia in rats by the synthetic nociceptin/orphanin FQ receptor agonist, Ro 64‐6198. Psychopharmacology (Berl) 161:113‐119. [Abstract] [Google Scholar]
  • Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, Massi M (2004) Attenuation of ethanol self‐administration and of conditioned reinstatement of alcohol‐seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol‐preferring rats. Psychopharmacology (Berl) 172:170‐178. [Europe PMC free article] [Abstract] [Google Scholar]
  • Corbani M, Gonindard C, Meunier JC (2004) Ligand‐regulated internalization of the opioid receptor‐like, 1: A confocal study. Endocrinology 145:2876‐2885. [Abstract] [Google Scholar]
  • Dautzenberg FM, Wichmann J, Higelin J, Py‐Lang G, Kratzeisen C, Malherbe P, Kilpatrick GJ, Jenck F (2001) Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64‐6198: Rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J Pharmacol Exp Ther 298:812‐819. [Abstract] [Google Scholar]
  • Dawson GR, Tricklebank MD (1995) Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci 16:33‐36. [Abstract] [Google Scholar]
  • Devine DP, Hoversten MT, Ueda Y, Akil H (2003) Nociceptin/orphanin FQ content is decreased in forebrain neurones during acute stress. J Neuroendocrinol 15:69‐74. [Abstract] [Google Scholar]
  • Devine DP, Watson SJ, Akil H (2001) Nociceptin/orphanin FQ regulates neuroendocrine function of the limbic‐hypothalamic‐pituitary‐adrenal axis. Neuroscience 102:541‐553. [Abstract] [Google Scholar]
  • Di Giannuario A, Pieretti S (2000) Nociceptin differentially affects morphine‐induced dopamine release from the nucleus accumbens and nucleus caudate in rats. Peptides 21:1125‐1130. [Abstract] [Google Scholar]
  • Fernandez F, Misilmeri MA, Felger JC, Devine DP (2004) Nociceptin/orphanin FQ increases anxiety‐related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology 29:59‐71. [Abstract] [Google Scholar]
  • Gavioli EC, Rae GA, Calo' G, Guerrini R, De Lima TC (2002) Central injections of nocistatin or its C‐terminal hexapeptide exert anxiogenic‐like effect on behaviour of mice in the plus‐maze test. Br J Pharmacol 136:764‐772. [Europe PMC free article] [Abstract] [Google Scholar]
  • Griebel G, Perrault G, Sanger DJ (1999) Orphanin FQ, a novel neuropeptide with anti‐stress‐like activity. Brain Res 836:221‐224. [Abstract] [Google Scholar]
  • Gunduz O, Rizzi A, Baldisserotto A, Guerrini R, Spagnolo B, Gavioli EC, Kocsis L, Magyar A, Benyhe S, Borsodi A, et al (2006) In vitro and in vivo pharmacological characterization of the nociceptin/orphanin FQ receptor ligand Ac‐RYYRIK‐ol. Eur J Pharmacol 539:39‐48. [Abstract] [Google Scholar]
  • Hashiba E, Lambert DG, Jenck F, Wichmann J, Smith G (2002) Characterisation of the non‐peptide nociceptin receptor agonist, Ro 64‐6198 in Chinese hamster ovary cells expressing recombinant human nociceptin receptors. Life Sci 70:1719‐1725. [Abstract] [Google Scholar]
  • Hawes BE, Fried S, Yao X, Weig B, Graziano MP (1998) Nociceptin (ORL‐1) and mu‐opioid receptors mediate mitogen‐activated protein kinase activation in CHO cells through a Gi‐coupled signaling pathway: Evidence for distinct mechanisms of agonist‐mediated desensitization. J Neurochem 71:1024‐1033. [Abstract] [Google Scholar]
  • Higgins GA, Grottick AJ, Ballard TM, Richards JG, Messer J, Takeshima H, Pauly‐Evers M, Jenck F, Adam G, Wichmann J (2001) Influence of the selective ORL1 receptor agonist, Ro 64‐6198, on rodent neurological function. Neuropharmacology 41:97‐107. [Abstract] [Google Scholar]
  • Higgins GA, Kew JN, Richards JG, Takeshima H, Jenck F, Adam G, Wichmann J, Kemp JA, Grottick AJ (2002) A combined pharmacological and genetic approach to investigate the role of orphanin FQ in learning and memory. Eur J Neurosci 15:911‐922. [Abstract] [Google Scholar]
  • Hou TJ, Xu XJ (2003) ADME evaluation in drug discovery. 3. Modeling blood‐brain barrier partitioning using simple molecular descriptors. J Chem Inf Comput Sci 43:2137‐2152. [Abstract] [Google Scholar]
  • Hou TJ, Zhang W, Xia K, Qiao XB, Xu XJ (2004) ADME evaluation in drug discovery. 5. Correlation of Caco‐2 permeation with simple molecular properties. J Chem Inf Comput Sci 44:1585‐1600. [Abstract] [Google Scholar]
  • Inoue M, Matsunaga S, Rashid MH, Yoshida A, Mizuno K, Sakurada T, Takeshima H, Ueda H (2001) Pronociceptive effects of nociceptin/orphanin FQ (13–17) at peripheral and spinal level in mice. J Pharmacol Exp Ther 299:213‐219. [Abstract] [Google Scholar]
  • Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr, Nothacker HP, Civelli O (1997) Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci U S A 94:14854‐14858. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S, et al (2000) A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: Anxiolytic profile in the rat. Proc Natl Acad Sci U S A 97:4938‐4943. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kamei J, Matsunawa Y, Miyata S, Tanaka S, Saitoh A (2004) Effects of nociceptin on the exploratory behavior of mice in the hole‐board test. Eur J Pharmacol 489:77‐87. [Abstract] [Google Scholar]
  • Koizumi M, Sakoori K, Midorikawa N, Murphy NP (2004) The NOP (ORL1) receptor antagonist compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non‐NOP‐receptor‐mediated mechanism. Br J Pharmacol 143:53‐62. [Europe PMC free article] [Abstract] [Google Scholar]
  • Koster A, Montkowski A, Schulz S, Stube EM, Knaudt K, Jenck F, Moreau JL, Nothacker HP, Civelli O, Reinscheid RK (1999) Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci U S A 96:10444‐10449. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kotlinska J, Rafalski P, Biala G, Dylag T, Rolka K, Silberring J (2003a) Nociceptin inhibits acquisition of amphetamine‐induced place preference and sensitization to stereotypy in rats. Eur J Pharmacol 474:233‐239. [Abstract] [Google Scholar]
  • Kotlinska J, Rafalski P, Talarek S, Dylag T, Rolka K, Wichmann J, Silberring J (2005) Is the nociceptin (NOP) receptor involved in attenuation of the expression of sensitization to morphine‐induced hyperlocomotion in mice? Behav Pharmacol 16:101‐106. [Abstract] [Google Scholar]
  • Kotlinska J, Wichmann J, Legowska A, Rolka K, Silberring J (2002) Orphanin FQ/nociceptin but not Ro 65‐6570 inhibits the expression of cocaine‐induced conditioned place preference. Behav Pharmacol 13:229‐235. [Abstract] [Google Scholar]
  • Kotlinska J, Wichmann J, Rafalski P, Talarek S, Dylag T, Silberring J (2003b) Non‐peptidergic OP4 receptor agonist inhibits morphine antinociception but does not influence morphine dependence. Neuroreport 14:601‐604. [Abstract] [Google Scholar]
  • Kremer JM, Wilting J, Janssen LH (1988) Drug binding to human alpha‐1‐acid glycoprotein in health and disease. Pharmacol Rev 40:1‐47. [Abstract] [Google Scholar]
  • Kuzmin A, Kreek MJ, Bakalkin G, Liljequist S (2006) The nociceptin/orphanin FQ receptor agonist Ro 64‐6198 reduces alcohol self‐administration and prevents relapse‐like alcohol drinking. Neuropsychopharmacology. [Abstract] [Google Scholar]
  • Kuzmin A, Sandin J, Terenius L, Ogren SO (2003) Acquisition, expression, and reinstatement of ethanol‐induced conditioned place preference in mice: Effects of opioid receptor‐like 1 receptor agonists and naloxone. J Pharmacol Exp Ther 304:310‐318. [Abstract] [Google Scholar]
  • Kuzmin A, Sandin J, Terenius L, Ogren SO (2004) Evidence in locomotion test for the functional heterogeneity of ORL‐1 receptors. Br J Pharmacol 141:132‐140. [Europe PMC free article] [Abstract] [Google Scholar]
  • Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: Implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 25:1072‐1080. [Abstract] [Google Scholar]
  • Le Cudennec C, Naudin B, Do Rego JC, Costentin J (2002) Nociceptin/orphanin FQ and related peptides reduce the increase in plasma corticosterone elicited in mice by an intracerebroventricular injection. Life Sci 72:163‐171. [Abstract] [Google Scholar]
  • Le Maitre E, Daubeuf F, Duterte‐Boucher D, Costentin J, Leroux‐Nicollet I (2006) Coupling of ORL1 (NOP) receptor to G proteins is decreased in the nucleus accumbens of anxious relative to non‐anxious mice. Brain Res 1110:144‐149. [Abstract] [Google Scholar]
  • Le Pen G, Wichmann J, Moreau JL, Jenck F (2002) The orphanin receptor agonist RO 64‐6198 does not induce place conditioning in rats. Neuroreport 13:451‐454. [Abstract] [Google Scholar]
  • Leggett JD, Harbuz MS, Jessop DS, Fulford AJ (2006) The nociceptin receptor antagonist [Nphe1,Arg14,Lys15]nociceptin/orphanin FQ‐NH2 blocks the stimulatory effects of nociceptin/orphanin FQ on the HPA axis in rats. Neuroscience 141:2051‐2057. [Abstract] [Google Scholar]
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3‐26. [Abstract] [Google Scholar]
  • Ma F, Xie H, Dong ZQ, Wang YQ, Wu GC (2005) Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res 1043:214‐217. [Abstract] [Google Scholar]
  • Mamiya T, Noda Y, Nishi M, Takeshima H, Nabeshima T (1998) Enhancement of spatial attention in nociceptin/orphanin FQ receptor‐knockout mice. Brain Res 783:236‐240. [Abstract] [Google Scholar]
  • Mandyam CD, Thakker DR, Christensen JL, Standifer KM (2002) Orphanin FQ/nociceptin‐mediated desensitization of opioid receptor‐like 1 receptor and mu opioid receptors involves protein kinase C: A molecular mechanism for heterologous cross‐talk. J Pharmacol Exp Ther 302:502‐509. [Abstract] [Google Scholar]
  • Martin‐Fardon R, Ciccocioppo R, Massi M, Weiss F (2000) Nociceptin prevents stress‐induced ethanol‐ but not cocaine‐seeking behavior in rats. Neuroreport 11:1939‐1943. [Abstract] [Google Scholar]
  • Mathis JP, Ryan‐Moro J, Chang A, Hom JS, Scheinberg DA, Pasternak GW (1997) Biochemical evidence for orphanin FQ/nociceptin receptor heterogeneity in mouse brain. Biochem Biophys Res Commun 230:462‐465. [Abstract] [Google Scholar]
  • McDonald J, Barnes TA, Okawa H, Williams J, Calo' G, Rowbotham DJ, Lambert DG (2003a) Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression: Studies using the ecdysone‐inducible mammalian expression system. Br J Pharmacol 140:61‐70. [Europe PMC free article] [Abstract] [Google Scholar]
  • McDonald J, Calo G, Guerrini R, Lambert DG (2003b) UFP‐101, a high affinity antagonist for the nociceptin/orphanin FQ receptor: Radioligand and GTPgamma(35)S binding studies. Naunyn Schmiedeberg's Arch Pharmacol 367:183‐187. [Abstract] [Google Scholar]
  • McLeod RL, Jia Y, Fernandez X, Parra LE, Wang X, Tulshian DB, Kiselgof EJ, Tan Z, Fawzi AB, Smith‐Torhan A, et al (2004) Antitussive profile of the NOP agonist Ro‐64‐6198 in the guinea pig. Pharmacology 71:143‐149. [Abstract] [Google Scholar]
  • McLeod RL, Parra LE, Mutter JC, Erickson CH, Carey GJ, Tulshian DB, Fawzi AB, Smith‐Torhan A, Egan RW, Cuss FM, et al (2001) Nociceptin inhibits cough in the guinea‐pig by activation of ORL(1) receptors. Br J Pharmacol 132:1175‐1178. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meunier J, Mouledous L, Topham CM (2000) The nociceptin (ORL1) receptor: molecular cloning and functional architecture. Peptides 21:893‐900. [Abstract] [Google Scholar]
  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B, et al (1995) Isolation and structure of the endogenous agonist of opioid receptor‐like ORL1 receptor. Nature 377:532‐535. [Abstract] [Google Scholar]
  • Miller SC (2005) Dextromethorphan psychosis, dependence and physical withdrawal. Addict Biol 10:325‐327. [Abstract] [Google Scholar]
  • Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK (1996) Orphanin FQ is a functional anti‐opioid peptide. Neuroscience 75:333‐337. [Abstract] [Google Scholar]
  • Mogil JS, Nessim LA, Wilson SG (1999) Strain‐dependent effects of supraspinal orphanin FQ/nociceptin on thermal nociceptive sensitivity in mice. Neurosci Lett 261:147‐150. [Abstract] [Google Scholar]
  • Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381‐415. [Abstract] [Google Scholar]
  • Molinspiration Chemoinformatics http://www.molinspiration.com/ 2006.
  • Montiel JL, Cornille F, Roques BP, Noble F (1997) Nociceptin/orphanin FQ metabolism: Role of aminopeptidase and endopeptidase 24.15. J Neurochem 68:354‐361. [Abstract] [Google Scholar]
  • Murphy NP, Lee Y, Maidment NT (1999) Orphanin FQ/nociceptin blocks acquisition of morphine place preference. Brain Res 832:168‐170. [Abstract] [Google Scholar]
  • Nicolas LB, Klein S, Prinssen EP (2006a) Ultrasound‐induced defensive‐like behaviors in lister‐hooded rats: Sensitivity to anxiolytics. Neuroscience meeting planner. Atlanta , GA : Society for Neuroscience, Online. [Google Scholar]
  • Nicolas LB, Kolb Y, Prinssen EP (2006b) A combined marble burying‐locomotor activity test in mice: A practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106‐115. [Abstract] [Google Scholar]
  • Obara I, Przewlocki R, Przewlocka B (2005) Spinal and local peripheral antiallodynic activity of Ro 64‐6198 in neuropathic pain in the rat. Pain 116:17‐25. [Abstract] [Google Scholar]
  • Okawa H, Nicol B, Bigoni R, Hirst RA, Calo G, Guerrini R, Rowbotham DJ, Smart D, McKnight AT, Lambert DG (1999) Comparison of the effects of [Phe1psi(CH2‐NH)Gly2]nociceptin(1‐13)NH2 in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. Br J Pharmacol 127:123‐130. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ouagazzal AM, Moreau JL, Pauly‐Evers M, Jenck F (2003) Impact of environmental housing conditions on the emotional responses of mice deficient for nociceptin/orphanin FQ peptide precursor gene. Behav Brain Res 144:111‐117. [Abstract] [Google Scholar]
  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus‐maze as a measure of anxiety in the rat. J Neurosci Methods 14:149‐167. [Abstract] [Google Scholar]
  • Ploj K, Roman E, Nylander I (2002) Effects of maternal separation on brain nociceptin/orphanin FQ peptide levels in male Wistar rats. Pharmacol Biochem Behav 73:123‐129. [Abstract] [Google Scholar]
  • Recker MD, Higgins GA (2004) The opioid receptor like‐1 receptor agonist Ro 64‐6198 (1S,3aS‐8‐2,3,3a,4,5,6‐hexahydro‐1H‐phenalen‐1‐yl‐1‐phenyl‐1,3,8‐triaza‐spiro[4.5]decan‐4‐one) produces a discriminative stimulus in rats distinct from that of a mu, kappa, and delta opioid receptor agonist cue. J Pharmacol Exp Ther 311:652‐658. [Abstract] [Google Scholar]
  • Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O (1995) Orphanin FQ: A neuropeptide that activates an opioidlike G protein‐coupled receptor. Science 270:792‐794. [Abstract] [Google Scholar]
  • Rizzi D, Bigoni R, Rizzi A, Jenck F, Wichmann J, Guerrini R, Regoli D, Calo G (2001) Effects of Ro 64‐6198 in nociceptin/orphanin FQ‐sensitive isolated tissues. Naunyn Schmiedeberg's Arch Pharmacol 363:551‐555. [Abstract] [Google Scholar]
  • Rover S, Adam G, Cesura AM, Galley G, Jenck F, Monsma FJ Jr, Wichmann J, Dautzenberg FM (2000) High‐affinity, non‐peptide agonists for the ORL1 (orphanin FQ/nociceptin) receptor. J Med Chem 43:1329‐1338. [Abstract] [Google Scholar]
  • Rover S, Wichmann J, Jenck F, Adam G, Cesura AM (2000) ORL1 receptor ligands: Structure‐activity relationships of 8‐cycloalkyl‐1‐phenyl‐1,3,8‐triaza‐spiro[4.5]decan‐4‐ones. Bioorg Med Chem Lett 10:831‐834. [Abstract] [Google Scholar]
  • Sakoori K, Murphy NP (2004) Central administration of nociceptin/orphanin FQ blocks the acquisition of conditioned place preference to morphine and cocaine, but not conditioned place aversion to naloxone in mice. Psychopharmacology (Berl) 172:129‐136. [Abstract] [Google Scholar]
  • Sakurada C, Sakurada S, Orito T, Tan‐No K, Sakurada T (2002) Degradation of nociceptin (orphanin FQ) by mouse spinal cord synaptic membranes is triggered by endopeptidase‐24.11: An in vitro and in vivo study. Biochem Pharmacol 64:1293‐1303. [Abstract] [Google Scholar]
  • Sakurada T, Sakurada S, Katsuyama S, Hayashi T, Sakurada C, Tan‐No K, Johansson H, Sandin J, Terenius L (2000) Evidence that N‐terminal fragments of nociceptin modulate nociceptin‐induced scratching, biting and licking in mice. Neurosci Lett 279:61‐64. [Abstract] [Google Scholar]
  • Sakurada C, Watanabe C, Sakurada T (2004) Occurrence of substance P(1‐7) in the metabolism of substance P and its antinociceptive activity at the mouse spinal cord level. Methods Find Exp Clin Pharmacol 26:171‐176. [Abstract] [Google Scholar]
  • Sakurada T, Sakurada S, Katsuyama S, Sakurada C, Tan‐No K, Terenius L (1999) Nociceptin (1‐7) antagonizes nociceptin‐induced hyperalgesia in mice. Br J Pharmacol 128:941‐944. [Europe PMC free article] [Abstract] [Google Scholar]
  • Shoblock JR, Wichmann J, Maidment NT (2005) The effect of a systemically active ORL‐1 agonist, Ro 64‐6198, on the acquisition, expression, extinction, and reinstatement of morphine conditioned place preference. Neuropharmacology 49:439‐446. [Abstract] [Google Scholar]
  • Spanagel R, Holter SM (2000) Pharmacological validation of a new animal model of alcoholism. J Neural Transm 107:669‐680. [Abstract] [Google Scholar]
  • Suaudeau C, Florin S, Meunier JC, Costentin J (1998) Nociceptin‐induced apparent hyperalgesia in mice as a result of the prevention of opioid autoanalgesic mechanisms triggered by the stress of an intracerebroventricular injection. Fundam Clin Pharmacol 12:420‐425. [Abstract] [Google Scholar]
  • Suder P, Kotlinska J, Smoluch MT, Sallberg M, Silberring J (1999) Metabolic fate of nociceptin/orphanin FQ in the rat spinal cord and biological activity of its released fragment. Peptides 20:239‐247. [Abstract] [Google Scholar]
  • Sun RQ, Wang Y, Zhao CS, Chang JK, Han JS (2001) Changes in brain content of nociceptin/orphanin FQ and endomorphin 2 in a rat model of neuropathic pain. Neurosci Lett 311:13‐16. [Abstract] [Google Scholar]
  • Teshima K, Minoguchi M, Tounai S, Ashimori A, Eguchi J, Allen CN, Shibata S (2005) Nonphotic entrainment of the circadian body temperature rhythm by the selective ORL1 receptor agonist W‐212393 in rats. Br J Pharmacol 146:33‐40. [Europe PMC free article] [Abstract] [Google Scholar]
  • Urien S, Bree F, Testa B, Tillement JP (1991) pH‐dependency of basic ligand binding to alpha 1‐acid glycoprotein (orosomucoid). Biochem J 280 (Pt 1):277‐280. [Europe PMC free article] [Abstract] [Google Scholar]
  • Vaidya AH, Rosenthal DI, Lang W, Crooke JJ, Benjamin D, Ilyin SE, Reitz AB (2005) Oral buspirone causes a shift in the dose‐response curve between the elevated‐plus maze and Vogel conflict tests in Long‐Evans rats: relation of brain levels of buspirone and 1‐PP to anxiolytic action. Methods Find Exp Clin Pharmacol 27:245‐255. [Abstract] [Google Scholar]
  • Varty GB, Hyde LA, Hodgson RA, Lu SX, McCool MF, Kazdoba TM, Del Vecchio RA, Guthrie DH, Pond AJ, Grzelak ME, et al (2005) Characterization of the nociceptin receptor (ORL‐1) agonist, Ro64‐6198, in tests of anxiety across multiple species. Psychopharmacology (Berl) 182:132‐143. [Abstract] [Google Scholar]
  • VCCLAB , Virtual Computational Chemistry Laboratory http://www.vcclab.org/lab/alogps/ 2006.
  • Vitale G, Arletti R, Ruggieri V, Cifani C, Massi M (2006) Anxiolytic‐like effects of nociceptin/orphanin FQ in the elevated plus maze and in the conditioned defensive burying test in rats. Peptides 27:2193‐2200. [Abstract] [Google Scholar]
  • Walker JR, Spina M, Terenius L, Koob GF (1998) Nociceptin fails to affect heroin self‐administration in the rat. Neuroreport 9:2243‐2247. [Abstract] [Google Scholar]
  • Wang HL, Hsu CY, Huang PC, Kuo YL, Li AH, Yeh TH, Tso AS, Chen YL (2005) Heterodimerization of opioid receptor‐like 1 and mu‐opioid receptors impairs the potency of micro receptor agonist. J Neurochem 92:1285‐1294. [Abstract] [Google Scholar]
  • Wichmann J, Adam G, Rover S, Cesura AM, Dautzenberg FM, Jenck F (1999) 8‐acenaphthen‐1‐yl‐1‐phenyl‐1,3,8‐triaza‐spiro[4. 5]decan-4-one derivatives as orphanin FQ receptor agonists. Bioorg Med Chem Lett 9:2343‐2348. [Abstract] [Google Scholar]
  • Wichmann J, Adam G, Rover S, Hennig M, Scalone M, Cesura AM, Dautzenberg FM, Jenck F (2000) Synthesis of (1S,3aS)‐8‐(2,3,3a,4,5, 6‐hexahydro‐1H‐phenalen‐1‐yl)‐1‐phenyl‐1,3,8‐triaza‐spiro[4. 5]decan‐4‐one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic‐like properties. Eur J Med Chem 35:839‐851. [Abstract] [Google Scholar]
  • Yang ZL, Gao YJ, Wu GC, Zhang YQ (2003) The rostral ventromedial medulla mediates the facilitatory effect of microinjected orphanin FQ in the periaqueductal gray on spinal nociceptive transmission in rats. Neuropharmacology 45:612‐622. [Abstract] [Google Scholar]
  • Zaveri N, Jiang F, Olsen C, Polgar W, Toll L (2005) Small‐molecule agonists and antagonists of the opioid receptor‐like receptor (ORL1, NOP): Ligand‐based analysis of structural factors influencing intrinsic activity at NOP. AAPS J 7:E345‐E352. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zhao RJ, Woo RS, Jeong MS, Shin BS, Kim DG, Kim KW (2003) Orphanin FQ/nociceptin blocks methamphetamine place preference in rats. Neuroreport 14:2383‐2385. [Abstract] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/9518437
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/9518437

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1111/j.1527-3458.2007.00007.x

Supporting
Mentioning
Contrasting
2
42
0

Article citations


Go to all (30) article citations

Other citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.