Zhongguo Dang Dai Er Ke Za Zhi. 2024 Sep 15; 26(9): 989–994.
Language: Chinese | English
代谢组学在儿童肠易激综合征诊治中的研究进展
Research progress of metabolomics in children with irritable bowel syndrome
,
综述1,2 and ,
审校3陈 小龙 (CHEN Xiao-Long)
1 浙江大学医学院附属儿童医院儿童内镜中心/国家儿童健康与疾病临床医学研究中心/国家儿童区域医疗中心, ,浙江 杭州 310052
Department of Gastroenterology and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
2 嘉善县第一人民医院儿科, ,浙江 嘉兴 314100
江 米足 (JIANG Mi-Zu.)
3 浙江大学医学院附属儿童医院消化科和儿童内镜中心/国家儿童健康与疾病临床医学研究中心/国家儿童区域医疗中心, ,浙江 杭州 310052
Guest Editor (s): 杨 丹
1 浙江大学医学院附属儿童医院儿童内镜中心/国家儿童健康与疾病临床医学研究中心/国家儿童区域医疗中心, ,浙江 杭州 310052
Department of Gastroenterology and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
2 嘉善县第一人民医院儿科, ,浙江 嘉兴 314100
3 浙江大学医学院附属儿童医院消化科和儿童内镜中心/国家儿童健康与疾病临床医学研究中心/国家儿童区域医疗中心, ,浙江 杭州 310052
Corresponding author.
陈小龙,男,硕士研究生,副主任医师。
Received 2024 Mar 14; Accepted 2024 Jun 24.
Copyright © 2024 Chinese Journal of Contemporary Pediatrics
Abstract
肠易激综合征(irritable bowel syndrome, IBS)是一种常见的功能性胃肠病,主要表现为腹痛、腹泻、便秘以及消化不良等症状。由于其病因和发病机制尚不清楚,并且缺乏特异性的生物标志物,使其临床诊断和治疗仍然存在较大困难。近年来,代谢组学技术因其无创、高通量、高精度、高可重复性等特点,在疾病诊断、治疗及预后评估方面得到了广泛应用。代谢组学技术有望为IBS的生物学机制研究、诊断及治疗提供新思路和方法。该文综述近年代谢组学在IBS中的应用及研究进展,并探讨其在儿童IBS临床诊断和治疗中的潜在应用价值。
Keywords: 肠易激综合征, 代谢组学, 生物标志物, 代谢通路, 儿童
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by symptoms such as abdominal pain, diarrhea, constipation, and indigestion. Given its unclear etiology and pathogenesis, and the absence of specific biomarkers, clinical diagnosis and treatment of IBS continue to pose significant challenges. In recent years, metabolomics technology, known for its non-invasive, high-throughput, high-precision, and highly reproducible features, has been widely applied in the diagnosis, treatment, and prognosis of various diseases. Therefore, metabolomics technology is expected to offer novel insights and methodologies for the biological mechanism research, diagnosis, and treatment of IBS. This article reviews recent advancements in the application of metabolomics to IBS, exploring its potential value in the clinical diagnosis and treatment of children with this condition.
Keywords: Irritable bowel syndrome, Metabolomics, Biomarker, Metabolic pathway, Child
肠易激综合征(irritable bowel syndrome, IBS)是一种常见的功能性胃肠疾病,主要表现为腹痛,伴有排便次数的改变,或大便性状的异常(腹泻、便秘或腹泻便秘交替)[1],目前临床上主要根据罗马Ⅳ标准诊断IBS,并分为4个亚型:腹泻型IBS(diarrhoea-predominant IBS, IBS-D)、便秘型IBS(constipation-predominant IBS, IBS-C)、混合型IBS(IBS with mixed symptoms, IBS-M)和未分类的IBS(unsubtyped IBS, IBS-U)[2-3]。研究显示全球IBS的发病率为5%~10%[4],严重影响着患者身心健康。由于IBS病因和发病机制尚不清楚,并且缺乏特异性的生物标志物,致使其临床诊断和治疗仍然存在较大困难,在儿科也面临着同样问题。因此,发现具有诊断价值的生物标志物,将成为儿童IBS的研究重点和目标。近年来,代谢组学技术的发展为揭示IBS的发病机制和寻找可靠的生物标志物提供了新途径。代谢组学研究通过分析生物体内小分子代谢物,能够全面、高通量地检测机体代谢物的变化,从而为IBS的诊断和治疗提供新视角[5]。本文总结近年代谢组学在IBS研究中的进展,包括发现与IBS相关的生物标志物和代谢通路,探讨其在临床诊断和治疗中的应用价值。
1. 代谢组学的研究方法和技术
代谢组学是基因组、转录组、蛋白质组和环境之间复杂相互作用的最终产物,可综合机体代谢物及其对环境变化进行动态响应的定性和定量分析[5]。代谢组学具有较强的可重复性、高灵敏度以及较强的区分和鉴别能力,能较精确地反映生物体内某些特定生理和病理状态的变化。
代谢组学的研究方法根据研究目的、样本处理、定性准确性、定量方式、灵敏度、是否需要标准品等不同可分为靶向和非靶向研究2种。靶向代谢组学研究,即有针对性、目标性,可针对某一种或一类特定的代谢物(通常少于20种)进行检测分析,是一种有偏向性的检测手段,主要目的是验证样品中是否存在目标代谢物,同时根据生物信息分析获取目标代谢物在不同样本中的绝对含量。非靶向代谢组学研究,是对生物体内源性代谢物进行系统全面的分析,获取大量代谢物的数据,并对其进行信息处理,从而找出差异代谢物,是一种无偏向性的代谢组学研究,主要目的是检测出尽可能多的代谢物(通常数百或数千种),最大程度反映样品的总代谢物特征。2011年开发了一种中间策略,称为半靶向代谢组学研究,其比靶向代谢组学研究可提供更多的代谢物种类及定量或半定量浓度,而准确性、精密度和特异性也比非靶向代谢组学研究更高,但可使用的标准品种类不多,仍然存在未检测到关注的目标代谢物的可能性,故应用尚不广泛[6]。
代谢组学研究技术主要采用质谱法和核磁共振(nuclear magnetic resonance, NMR)技术。质谱法通常分为气相色谱-质谱法(gas chromatography-mass spectrometry, GC-MS)和液相色谱-质谱法(liquid chromatograph-mass spectrometry, LC-MS),通过分析样品中的代谢物谱,利用质谱仪和数据库进行定性和定量分析,检测到的代谢物数量和种类取决于电离模式的选择,优点是高灵敏度和选择性,但样品制备要求高,样品回收率低,实验成本高。NMR技术则通过检测分子内的核自旋共振信号来获得代谢物的结构信息,这些高通量的分析技术使我们能够全面地了解代谢物的变化,并寻找与特定疾病相关的代谢途径和生物标志物,优点是样品制备要求低,样品可回收并长期保存,对同一样品也可进行多次分析,具有非常高的可重复性,但灵敏度及选择性低于质谱法[6]。
2. 代谢组学在IBS研究中的进展
代谢组学可以通过检测机体内代谢产物的整体谱图,利用多种分析方法,结合生物信息学技术对代谢谱数据进行处理,从而获取代谢物质组成及其相互作用,最终识别和量化改变的代谢物质,并对某些重要代谢物质进行结构鉴定和功能分析。而人体代谢又是一个复杂的过程,多种内部和外部因素,比如年龄、性别、种族、体重指数、饮食习惯、用药情况等都可能会影响机体的代谢表型[7-8]。在IBS研究中,代谢组学技术可从全面和系统的角度对IBS患者与健康人群间代谢物组成和代谢途径的差异进行分析和比较,从而发现和鉴定与IBS相关的代谢调节通路,进一步为IBS发病机制、临床诊断及治疗提供有益信息。
2.1. 代谢组学在IBS发病机制中的应用
IBS的发病机制尚不明确,潜在致病因素包括遗传、内脏高敏感性、胃肠动力障碍、肠道通透性增加、脑-肠轴功能失调、肠道微生物群改变等[9-11]。Ahluwalia等[12]采用GC-MS对40例IBS患者和18例对照者的粪便代谢组学进行了分析,发现IBS患者的氨基酸代谢以及多种细胞和分子功能发生了改变,并且IBS患者具有独特的粪便微生物群和与排便习惯相关的代谢物特征。Baumgartner等[13]对欧洲2所大学内窥镜诊所接受诊疗的1 426例患者的粪便及结肠活检标本进行代谢组学和体外生物膜形成实验,代谢组学分析发现生物膜内胆汁酸的积累与粪便胆汁酸排泄相关,认为这种表型可能与腹泻相关。Hu等[14]采用结肠扩张和约束应激法构建IBS大鼠模型,采用代谢组学方法探讨应激后IBS大鼠模型肠道菌群和代谢表型的变化和相关性。结果表明,IBS大鼠粪便代谢表型发生明显变化,包括5种代谢物增加和19种代谢物减少。此外,苯丙氨酸、酪氨酸和色氨酸生物合成是IBS应激诱导的主要代谢途径。Chen等[15]运用母婴分离构建IBS小鼠模型发现IBS组小鼠内脏超敏反应从幼年期持续到成年期,并通过非靶向LC-MS技术发现IBS组小鼠与对照组相比在不同年龄段粪便中均检测到5种相同的差异代谢物(苯甲酰胺、牛磺酸、乙酰左旋肉碱、吲哚、乙苯),涉及牛磺酸和亚牛磺酸代谢、组氨酸代谢、苯丙氨酸、酪氨酸和色氨酸生物合成等代谢通路。Yu等[16]运用GC-MS技术研究显示IBS组小鼠粪便与对照组相比共鉴定出14种差异代谢物,其中苯乙胺是应激诱导的主要代谢物,苯丙氨酸代谢是最相关的代谢通路。另一项前瞻性病例对照研究通过LC-MS靶向检测5-羟色胺(5-hydroxytryptamine, 5-HT),表明IBS-C患者餐后5-HT释放减少,而感染后IBS患者5-HT释放增加,表明5-HT的异常分泌可能导致IBS患者表现出不同症状[17],已有研究表明5-HT3受体拮抗剂可降低IBS-D患者的排便频率与紧迫性,并改善粪便性状[18],而5-HT4受体激动剂则会增加IBS-C患者排便频率并降低粪便黏稠度[19]。多项研究通过代谢组学技术分析,IBS患儿与健康儿童之间在代谢水平上存在差异,表现为核苷酸代谢、氨基酸代谢、脂质代谢和糖代谢等相关通路的改变,这些代谢通路紊乱可能引起肠道微生物与肠道组织发生相互作用,从而导致IBS的发生和发展[20-22]。
2.2. 代谢组学在IBS诊断中的应用
目前儿童IBS诊断基于症状,采用罗马Ⅳ标准,缺乏客观的生物标志物或影像学检查进行诊断。人们一直在寻找一些可靠、准确且无创的生物标志物来快速诊断IBS,实现早期干预和治疗。代谢组学在IBS的诊断和个体化治疗中具有极大潜力。一项病例对照研究中,Mujagic等[23]对196例临床IBS患者和160例无胃肠道症状的健康人群组成的队列进行了多项血浆和粪便标志物的测定,通过GC-MS技术测定短链脂肪酸中的乙酸盐、丙酸盐、丁酸盐、戊酸盐和己酸盐,最终确定了一组包含己酸盐在内的8个生物标志物组,以高灵敏度(88.1%)和特异度(86.5%)区分IBS患者和健康人群。Le Gall等[24]在2年内对10例IBS患者及22例健康人群的124个粪便标本运用NMR技术进行代谢组学研究,发现与健康人群相比IBS患者样本中胆汁酸增加,支链脂肪酸减少,短链脂肪酸和氨基酸变化不显著;Jeffery等[25]收集了80例IBS患者(罗马Ⅳ标准)和65例健康对照者的粪便和尿液样本,并通过GC-MS和LC-MS共同分析样本的代谢物,与对照组相比IBS组尿液代谢组的成对比较确定了127个差异丰富的特征,粪便代谢物的成对比较分析确定了128个差异丰富的特征,不论尿液代谢组谱还是粪便代谢组谱都可以将IBS患者与对照个体区分开来,并发现患有胆汁酸吸收不良的IBS患者的粪便代谢组与不患有胆汁酸吸收不良患者的粪便代谢组显著不同。Ahmed等[26]的一项横断面研究基于GC-MS技术确定IBS-D患者的粪便挥发性有机代谢物(volatile organic compound, VOC)比健康人群更丰富,单变量分析显示短链脂肪酸酯、环己烷甲酸及其酯衍生物与IBS-D相关。Tang等[27]通过代谢谱分析了不同中医证候的63例IBS-D患者及30例对照者的血清样本,共鉴定出13种代谢物被认为可能是IBS-D的潜在生物标志物,其中甘油磷脂代谢可以作为IBS-D中医证候辨证分型的客观指标,有助于对IBS-D中医症型进行分类。Baranska等[28]的病例对照研究中通过呼气中的一组16种VOC正确预测了89.4%的IBS患者和73.3%的健康对照者(曲线下面积为0.83),并且表明选定的VOC与IBS症状相关,不受其他宿主或疾病相关因素的影响,显示了VOC在IBS诊断和监测中的潜在用途。Mars等[29]对肠道微生物组、代谢组、宿主表观基因组和转录组的纵向多组学研究表明,嘌呤代谢是IBS中一种具有转化潜力的新型宿主-微生物代谢途径。此外,代谢组学技术还可以对IBS患儿的代谢物质进行个体化分析,发现代谢物的改变与不同症状表现之间存在相关性,可为IBS的临床诊断提供重要的参考依据[27, 30-31]。
2.3. 代谢组学在IBS治疗中的应用
目前儿童IBS的治疗主要依靠对症治疗,缺乏针对性和个体化的治疗手段。尽管已有药物可用于缓解IBS的症状,而非治疗根本问题[32]。因此,以代谢组学技术为依托的个性化治疗策略可以为IBS的治疗提供新思路。Yu等[16]的研究中IBS模型组和IBS+丁酸梭菌组比较发现,IBS模型组加入丁酸梭菌后降低了IBS小鼠的粪便颗粒数量和内脏敏感性评分,并恢复了粪便特征,因此,使用丁酸梭菌可以改善IBS小鼠的内脏敏感性和腹泻症状。Noorbakhsh等[21]对16例健康参与者和8例IBS-D患者的尿液和血清代谢物进行了基于NMR的代谢组学研究,发现IBS-D组和对照组基线时血清和尿液代谢物浓度存在差异,一碳代谢发生变化导致IBS发生,并且这些变化可以通过添加合生元干预来逆转,干预后IBS-D患者的粪便乳酸菌数量有所增加,健康状况也有所改善。一项前瞻性纵向随机交叉研究显示,通过饮食干预,包括低发酵碳水化合物饮食(low FODMAP diet, LFD)和高发酵碳水化合物饮食(high FODMAP diet, HFD),最终对25例参与者4个时间点的粪便样本进行LC-MS检测,结果显示LFD组和HFD组存在明显差异,LFD降低了IBS患者症状严重程度总分和改善了腹痛症状[33]。Wilson等[34]的双盲随机对照研究发现,使用安慰剂治疗IBS患者与使用LFD相比粪便及尿液代谢物有明显差异,LFD组中粪便代谢物丙酸盐(灵敏度为91%,特异度为89%)、环己烷甲酸酯(灵敏度为80%,特异度为78%)以及尿液代谢物谱均可预测临床LFD治疗IBS患者的反应。Ling等[35]基于LC-MS的代谢组学鉴定了肠康方(Chang-Kang-Fang formula, CKF)治疗组中显著改变的5-HT通路相关代谢物,CKF治疗可以诱导肠道微生物群的结构变化,从而通过减少肠道微生物群的数量来调节肠道微生物群。CKF可有效缓解IBS,这与通过微生物群-肠-脑轴的双向通路改变代谢物谱和肠道微生物群的特征有关。此外,其他针对性治疗方案,如特异性的抗菌药和具有免疫调节功能的药物等也可以利用代谢组学技术进行药物的推荐使用[36-37]。
3. 代谢组学在IBS研究中的局限性及未来
目前代谢组学在IBS中的研究结果有助于深入了解IBS的发病机制,为该疾病的临床诊断和治疗提供了新的靶点和策略。然而,当前研究仍存在一些局限性。首先,由于样本量的限制,研究结果的可靠性和复现性有待进一步验证。其次,代谢组学研究揭示的代谢通路变化和生物标志物可能仅仅是儿童IBS的一部分代谢特征,其具体的生物学意义和作用机制尚不清楚。此外,代谢组学研究仅揭示了IBS的相关代谢物和代谢通路的变化,上述多项研究如苯丙氨酸代谢、嘌呤代谢等代谢通路的变化,都是IBS中具有转化潜力的代谢途径。
IBS的发病机制尚不清楚,内脏高敏感性是其重要因素,还涉及肠道菌群、肠道动力、肠道免疫和脑-肠轴的调控。由于机制的复杂性和治疗的非精准性,国内外研究者一直在寻找IBS可能的生物标志物,这对诊断或治疗都具有极大的临床潜在价值。组学技术的发展,尤其是代谢组学的应用,为其提供了契机。希望通过IBS基础和临床相关代谢组学的研究,揭示特异性的代谢通路,并进一步通过动物和临床验证,筛选出诊断IBS的生物标志物,也使得针对靶点治疗IBS成为可能。
综上所述,代谢组学在IBS的研究中取得了重要进展,为该疾病的发病机制、临床诊断及治疗提供了新视角,但有关儿童IBS的研究相对较少。同时代谢组学还可与基因组学、转录组学、蛋白质组学和临床生物化学等其他领域结合使用,以期为儿童IBS的临床诊断和治疗提供更好的支持。
基金资助
“十四五”国家重点研发计划项目(2023YFC2706500)及课题(2023YFC2706504);国家中心自主立项项目(G20A0008)。
作者贡献
陈小龙负责资料收集、文章撰写;江米足负责论文修改、审阅。
参 考 文 献
1.
Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV[J]. Gastroenterology, 2016, 150(6): 1262-1279.e2. DOI: 10.1053/j.gastro.2016.02.032.
[Abstract] [CrossRef] [Google Scholar]2.
Benninga MA, Faure C, Hyman PE, et al.
Childhood functional gastrointestinal disorders: neonate/toddler[J]. Gastroenterology, 2016. DOI: 10.1053/j.gastro.2016.02.016.
[Abstract] [CrossRef] [Google Scholar]4.
Sperber AD, Dumitrascu D, Fukudo S, et al.
The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: a Rome Foundation working team literature review[J]. Gut, 2017, 66(6): 1075-1082. DOI: 10.1136/gutjnl-2015-311240.
[Abstract] [CrossRef] [Google Scholar]6.
Dunn WB, Broadhurst DI, Atherton HJ, et al.
Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Chem Soc Rev, 2011, 40(1): 387-426. DOI: 10.1039/b906712b.
[Abstract] [CrossRef] [Google Scholar]7.
van Valkengoed IGM, Argmann C, Ghauharali-van der Vlugt K, et al.
Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin[J]. Nutr Diabetes, 2017, 7(12): 300. DOI: 10.1038/s41387-017-0003-z.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]9.
Noor SO, Ridgway K, Scovell L, et al.
Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota[J]. BMC Gastroenterol, 2010, 10: 134. DOI: 10.1186/1471-230X-10-134.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]10.
Ringel-Kulka T, Choi CH, Temas D, et al.
Altered colonic bacterial fermentation as a potential pathophysiological factor in irritable bowel syndrome[J]. Am J Gastroenterol, 2015, 110(9): 1339-1346. DOI: 10.1038/ajg.2015.220.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]11.
Labus JS, Dinov ID, Jiang Z, et al.
Irritable bowel syndrome in female patients is associated with alterations in structural brain networks[J]. Pain, 2014, 155(1): 137-149. DOI: 10.1016/j.pain.2013.09.020.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]12.
Ahluwalia B, Iribarren C, Magnusson MK, et al.
A distinct faecal microbiota and metabolite profile linked to bowel habits in patients with irritable bowel syndrome[J]. Cells, 2021, 10(6): 1459. DOI: 10.3390/cells10061459.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]13.
Baumgartner M, Lang M, Holley H, et al.
Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis[J]. Gastroenterology, 2021, 161(4): 1245-1256.e20. DOI: 10.1053/j.gastro.2021.06.024.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]14.
Hu Y, Chen F, Ye H, et al.
Integrative analysis of the gut microbiome and metabolome in a rat model with stress induced irritable bowel syndrome[J]. Sci Rep, 2021, 11(1): 17596. DOI: 10.1038/s41598-021-97083-z.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]15.
Chen X, Hu C, Yan C, et al.
Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood[J]. Sci Rep, 2023, 13(1): 7670. DOI: 10.1038/s41598-023-34792-7.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]16.
Yu LM, Zhao KJ, Wang SS, et al.
Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome[J]. World J Gastroenterol, 2018, 24(8): 894-904. DOI: 10.3748/wjg.v24.i8.894.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]17.
Dunlop SP, Coleman NS, Blackshaw E, et al.
Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome[J]. Clin Gastroenterol Hepatol, 2005, 3(4): 349-357. DOI: 10.1016/s1542-3565(04)00726-8.
[Abstract] [CrossRef] [Google Scholar]18.
Black CJ, Burr NE, Camilleri M, et al.
Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis[J]. Gut, 2020, 69(1): 74-82. DOI: 10.1136/gutjnl-2018-318160.
[Abstract] [CrossRef] [Google Scholar]19.
Müller-Lissner SA, Fumagalli I, Bardhan KD, et al.
Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation[J]. Aliment Pharmacol Ther, 2001, 15(10): 1655-1666. DOI: 10.1046/j.1365-2036.2001.01094.x.
[Abstract] [CrossRef] [Google Scholar]20.
Barbara G, Grover M, Bercik P, et al.
Rome foundation working team report on post-infection irritable bowel syndrome[J]. Gastroenterology, 2019, 156(1): 46-58.e7. DOI: 10.1053/j.gastro.2018.07.011.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]21.
Noorbakhsh H, Yavarmanesh M, Mortazavi SA, et al.
Metabolomics analysis revealed metabolic changes in patients with diarrhea-predominant irritable bowel syndrome and metabolic responses to a synbiotic yogurt intervention[J]. Eur J Nutr, 2019, 58(8): 3109-3119. DOI: 10.1007/s00394-018-1855-2.
[Abstract] [CrossRef] [Google Scholar]22.
Keshteli AH, Madsen KL, Mandal R, et al.
Comparison of the metabolomic profiles of irritable bowel syndrome patients with ulcerative colitis patients and healthy controls: new insights into pathophysiology and potential biomarkers[J]. Aliment Pharmacol Ther, 2019, 49(6): 723-732. DOI: 10.1111/apt.15141.
[Abstract] [CrossRef] [Google Scholar]23.
Mujagic Z, Tigchelaar EF, Zhernakova A, et al.
A novel biomarker panel for irritable bowel syndrome and the application in the general population[J]. Sci Rep, 2016, 6: 26420. DOI: 10.1038/srep26420.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]24.
Le Gall G, Noor SO, Ridgway K, et al.
Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome[J]. J Proteome Res, 2011, 10(9): 4208-4218. DOI: 10.1021/pr2003598.
[Abstract] [CrossRef] [Google Scholar]25.
Jeffery IB, Das A, O'Herlihy E, et al.
Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption[J]. Gastroenterology, 2020, 158(4): 1016-1028.e8. DOI: 10.1053/j.gastro.2019.11.301.
[Abstract] [CrossRef] [Google Scholar]26.
Ahmed I, Greenwood R, Costello Bde L, et al.
An investigation of fecal volatile organic metabolites in irritable bowel syndrome[J]. PLoS One, 2013, 8(3): e58204. DOI: 10.1371/journal.pone.0058204.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]27.
Tang SQ, Wang YL, Xie ZY, et al.
Serum metabolic profiling of traditional Chinese medicine syndromes in patients with diarrhea-predominant irritable bowel syndrome[J]. J Integr Med, 2021, 19(3): 274-281. DOI: 10.1016/j.joim.2021.03.002.
[Abstract] [CrossRef] [Google Scholar]28.
Baranska A, Mujagic Z, Smolinska A, et al.
Volatile organic compounds in breath as markers for irritable bowel syndrome: a metabolomic approach[J]. Aliment Pharmacol Ther, 2016, 44(1): 45-56. DOI: 10.1111/apt.13654.
[Abstract] [CrossRef] [Google Scholar]29.
Mars RAT, Yang Y, Ward T, et al.
Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome[J]. Cell, 2020, 182(6): 1460-1473.e17. DOI: 10.1016/j.cell.2020.08.007.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]30.
Black CJ, Staudacher HM, Ford AC.. Efficacy of a low FODMAP diet in irritable bowel syndrome: systematic review and network meta-analysis[J]. Gut, 2022, 71(6): 1117-1126. DOI: 10.1136/gutjnl-2021-325214.
[Abstract] [CrossRef] [Google Scholar]31.
Mujagic Z, Kasapi M, Jonkers DM, et al.
Integrated fecal microbiome-metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome[J]. Gut Microbes, 2022, 14(1): 2063016. DOI: 10.1080/19490976.2022.2063016.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]32.
Camilleri M. Diagnosis and treatment of irritable bowel syndrome: a review[J]. JAMA, 2021, 325(9): 865-877. DOI: 10.1001/jama.2020.22532.
[Abstract] [CrossRef] [Google Scholar]33.
Tuck CJ, Abu Omar A, De Palma G, et al.
Changes in signalling from faecal neuroactive metabolites following dietary modulation of IBS pain[J]. Gut, 2022. DOI: 10.1136/gutjnl-2022-327260. Epub ahead of printDOI: 10.1136/gutjnl-2022-327260.
[Abstract] [CrossRef] [CrossRef] [Google Scholar]34.
Wilson B, Kanno T, Slater R, et al.
Faecal and urine metabolites, but not gut microbiota, may predict response to low FODMAP diet in irritable bowel syndrome[J]. Aliment Pharmacol Ther, 2023, 58(4): 404-416. DOI: 10.1111/apt.17609.
[Abstract] [CrossRef] [Google Scholar]35.
Ling X, Peng S, Zhong J, et al.
Effects of Chang-Kang-Fang formula on the microbiota-gut-brain axis in rats with irritable bowel syndrome[J]. Front Pharmacol, 2022, 13: 778032. DOI: 10.3389/fphar.2022.778032.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]36.
Zeber-Lubecka N, Kulecka M, Ambrozkiewicz F, et al.
Limited prolonged effects of rifaximin treatment on irritable bowel syndrome-related differences in the fecal microbiome and metabolome[J]. Gut Microbes, 2016, 7(5): 397-413. DOI: 10.1080/19490976.2016.1215805.
[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]37.
Yamamoto M, Pinto-Sanchez MI, Bercik P, et al.
Metabolomics reveals elevated urinary excretion of collagen degradation and epithelial cell turnover products in irritable bowel syndrome patients[J]. Metabolomics, 2019, 15(6): 82. DOI: 10.1007/s11306-019-1543-0.
[Abstract] [CrossRef] [Google Scholar]