数学において二次空間 (X, q)(すなわち二次形式 q を備えたベクトル空間 X)のヌルベクトル (null vector) または等方ベクトル(とうほうベクトル、英: isotropic vector)とは、q(x) = 0 を満たす非零元 x ∈ X を言う。 実二次形式の理論において、定符号二次形式と等方二次形式は相異なる(両者の違いは後者には非零ヌルベクトルが存在するという点だけである)。そのようなベクトルが取れるとき、二次空間 (X, q) はと呼ばれる。擬ユークリッドなベクトル空間 X は、(一意とは限らない)互いに直交する部分空間 A, B を用いて X = A + B と分解して、二次形式 q が A 上正定値かつ B 上負定値となるようにすることができる。X のヌル円錐または等方錐は均衡球面の合併 からなる。この錐は原点を通るすべての合併でもある。

Property Value
dbo:abstract
  • 数学において二次空間 (X, q)(すなわち二次形式 q を備えたベクトル空間 X)のヌルベクトル (null vector) または等方ベクトル(とうほうベクトル、英: isotropic vector)とは、q(x) = 0 を満たす非零元 x ∈ X を言う。 実二次形式の理論において、定符号二次形式と等方二次形式は相異なる(両者の違いは後者には非零ヌルベクトルが存在するという点だけである)。そのようなベクトルが取れるとき、二次空間 (X, q) はと呼ばれる。擬ユークリッドなベクトル空間 X は、(一意とは限らない)互いに直交する部分空間 A, B を用いて X = A + B と分解して、二次形式 q が A 上正定値かつ B 上負定値となるようにすることができる。X のヌル円錐または等方錐は均衡球面の合併 からなる。この錐は原点を通るすべての合併でもある。 (ja)
  • 数学において二次空間 (X, q)(すなわち二次形式 q を備えたベクトル空間 X)のヌルベクトル (null vector) または等方ベクトル(とうほうベクトル、英: isotropic vector)とは、q(x) = 0 を満たす非零元 x ∈ X を言う。 実二次形式の理論において、定符号二次形式と等方二次形式は相異なる(両者の違いは後者には非零ヌルベクトルが存在するという点だけである)。そのようなベクトルが取れるとき、二次空間 (X, q) はと呼ばれる。擬ユークリッドなベクトル空間 X は、(一意とは限らない)互いに直交する部分空間 A, B を用いて X = A + B と分解して、二次形式 q が A 上正定値かつ B 上負定値となるようにすることができる。X のヌル円錐または等方錐は均衡球面の合併 からなる。この錐は原点を通るすべての合併でもある。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3532942 (xsd:integer)
dbo:wikiPageLength
  • 2822 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 85607901 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Null Vector (ja)
  • Null Vector (ja)
prop-en:urlname
  • NullVector (ja)
  • NullVector (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において二次空間 (X, q)(すなわち二次形式 q を備えたベクトル空間 X)のヌルベクトル (null vector) または等方ベクトル(とうほうベクトル、英: isotropic vector)とは、q(x) = 0 を満たす非零元 x ∈ X を言う。 実二次形式の理論において、定符号二次形式と等方二次形式は相異なる(両者の違いは後者には非零ヌルベクトルが存在するという点だけである)。そのようなベクトルが取れるとき、二次空間 (X, q) はと呼ばれる。擬ユークリッドなベクトル空間 X は、(一意とは限らない)互いに直交する部分空間 A, B を用いて X = A + B と分解して、二次形式 q が A 上正定値かつ B 上負定値となるようにすることができる。X のヌル円錐または等方錐は均衡球面の合併 からなる。この錐は原点を通るすべての合併でもある。 (ja)
  • 数学において二次空間 (X, q)(すなわち二次形式 q を備えたベクトル空間 X)のヌルベクトル (null vector) または等方ベクトル(とうほうベクトル、英: isotropic vector)とは、q(x) = 0 を満たす非零元 x ∈ X を言う。 実二次形式の理論において、定符号二次形式と等方二次形式は相異なる(両者の違いは後者には非零ヌルベクトルが存在するという点だけである)。そのようなベクトルが取れるとき、二次空間 (X, q) はと呼ばれる。擬ユークリッドなベクトル空間 X は、(一意とは限らない)互いに直交する部分空間 A, B を用いて X = A + B と分解して、二次形式 q が A 上正定値かつ B 上負定値となるようにすることができる。X のヌル円錐または等方錐は均衡球面の合併 からなる。この錐は原点を通るすべての合併でもある。 (ja)
rdfs:label
  • ヌルベクトル (ja)
  • ヌルベクトル (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of