数学における体 K 上の合成代数(ごうせいだいすう、composition algebra)は、K 上の(必ずしも結合的でない)単位的多元環 A で、条件 を満たす非退化二次形式 N を持つ。合成代数のデータには共軛と呼ばれる対合 x ↦ x* も含まれる。付随する二次形式は N(x) = xx* として与えられ、しばしばその合成代数のノルムと呼ばれる(その意味で合成代数を「ノルム多元環」ともいうが、関数解析学にいうノルム代数とは同じものでないことに注意)。 合成代数 (A, ∗, N) は多元体(ノルム多元体)か、さもなくば分解型多元環 (split algebra) であり、それはヌルベクトル(N(v) = 0 を満たす非零元 v ∈ A)の存在によって決まる。実際、ヌルベクトルが全く存在しないとき、非零元 x の乗法逆元は x*/N(x) が与えるから、その代数は多元体である。他方ヌルベクトルが存在するとき、N は等方二次形式と呼ばれ、その代数は「分裂」(split) する(または分解型 (split type) である)と言う。

Property Value
dbo:abstract
  • 数学における体 K 上の合成代数(ごうせいだいすう、composition algebra)は、K 上の(必ずしも結合的でない)単位的多元環 A で、条件 を満たす非退化二次形式 N を持つ。合成代数のデータには共軛と呼ばれる対合 x ↦ x* も含まれる。付随する二次形式は N(x) = xx* として与えられ、しばしばその合成代数のノルムと呼ばれる(その意味で合成代数を「ノルム多元環」ともいうが、関数解析学にいうノルム代数とは同じものでないことに注意)。 合成代数 (A, ∗, N) は多元体(ノルム多元体)か、さもなくば分解型多元環 (split algebra) であり、それはヌルベクトル(N(v) = 0 を満たす非零元 v ∈ A)の存在によって決まる。実際、ヌルベクトルが全く存在しないとき、非零元 x の乗法逆元は x*/N(x) が与えるから、その代数は多元体である。他方ヌルベクトルが存在するとき、N は等方二次形式と呼ばれ、その代数は「分裂」(split) する(または分解型 (split type) である)と言う。 (ja)
  • 数学における体 K 上の合成代数(ごうせいだいすう、composition algebra)は、K 上の(必ずしも結合的でない)単位的多元環 A で、条件 を満たす非退化二次形式 N を持つ。合成代数のデータには共軛と呼ばれる対合 x ↦ x* も含まれる。付随する二次形式は N(x) = xx* として与えられ、しばしばその合成代数のノルムと呼ばれる(その意味で合成代数を「ノルム多元環」ともいうが、関数解析学にいうノルム代数とは同じものでないことに注意)。 合成代数 (A, ∗, N) は多元体(ノルム多元体)か、さもなくば分解型多元環 (split algebra) であり、それはヌルベクトル(N(v) = 0 を満たす非零元 v ∈ A)の存在によって決まる。実際、ヌルベクトルが全く存在しないとき、非零元 x の乗法逆元は x*/N(x) が与えるから、その代数は多元体である。他方ヌルベクトルが存在するとき、N は等方二次形式と呼ばれ、その代数は「分裂」(split) する(または分解型 (split type) である)と言う。 (ja)
dbo:wikiPageID
  • 2444384 (xsd:integer)
dbo:wikiPageLength
  • 7576 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90239684 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:id
  • composition+algebra (ja)
  • composition+algebra (ja)
prop-en:title
  • Real Normed Algebra (ja)
  • composition algebra (ja)
  • Real Normed Algebra (ja)
  • composition algebra (ja)
prop-en:urlname
  • RealNormedAlgebra (ja)
  • CompositionAlgebra (ja)
  • RealNormedAlgebra (ja)
  • CompositionAlgebra (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学における体 K 上の合成代数(ごうせいだいすう、composition algebra)は、K 上の(必ずしも結合的でない)単位的多元環 A で、条件 を満たす非退化二次形式 N を持つ。合成代数のデータには共軛と呼ばれる対合 x ↦ x* も含まれる。付随する二次形式は N(x) = xx* として与えられ、しばしばその合成代数のノルムと呼ばれる(その意味で合成代数を「ノルム多元環」ともいうが、関数解析学にいうノルム代数とは同じものでないことに注意)。 合成代数 (A, ∗, N) は多元体(ノルム多元体)か、さもなくば分解型多元環 (split algebra) であり、それはヌルベクトル(N(v) = 0 を満たす非零元 v ∈ A)の存在によって決まる。実際、ヌルベクトルが全く存在しないとき、非零元 x の乗法逆元は x*/N(x) が与えるから、その代数は多元体である。他方ヌルベクトルが存在するとき、N は等方二次形式と呼ばれ、その代数は「分裂」(split) する(または分解型 (split type) である)と言う。 (ja)
  • 数学における体 K 上の合成代数(ごうせいだいすう、composition algebra)は、K 上の(必ずしも結合的でない)単位的多元環 A で、条件 を満たす非退化二次形式 N を持つ。合成代数のデータには共軛と呼ばれる対合 x ↦ x* も含まれる。付随する二次形式は N(x) = xx* として与えられ、しばしばその合成代数のノルムと呼ばれる(その意味で合成代数を「ノルム多元環」ともいうが、関数解析学にいうノルム代数とは同じものでないことに注意)。 合成代数 (A, ∗, N) は多元体(ノルム多元体)か、さもなくば分解型多元環 (split algebra) であり、それはヌルベクトル(N(v) = 0 を満たす非零元 v ∈ A)の存在によって決まる。実際、ヌルベクトルが全く存在しないとき、非零元 x の乗法逆元は x*/N(x) が与えるから、その代数は多元体である。他方ヌルベクトルが存在するとき、N は等方二次形式と呼ばれ、その代数は「分裂」(split) する(または分解型 (split type) である)と言う。 (ja)
rdfs:label
  • 合成代数 (ja)
  • 合成代数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of