数学における作用素論(さようそろん、英: Operator theory)は、微分作用素や積分作用素をはじめとする線型作用素の研究である。各作用素は、有界性や閉性などといった特徴によって抽象的に表すことができ、またなども視野に含むこともあり得る。そのような研究は函数空間の位相に非常に依存しており、函数解析学の一分科を成す。 作用素の集合が体上の多元環を成すならば、それを作用素環と呼ぶ。作用素環を記述することもまた作用素論の一部である。