数学の関数解析学の分野における連続線型拡張(れんぞくせんけいかくちょう、英: continuous linear extension)とは、次に述べる手順のことを指す: 完備なノルム線型空間 上にある線型変換を定義する時、初めに 内の稠密な部分集合上に線型変換 を定義し、その後、後述の定理によって、 を全空間へと拡張することが便利となることが、しばしばある。この結果として得られる拡張は線型かつ有界(したがって、連続)である。

Property Value
dbo:abstract
  • 数学の関数解析学の分野における連続線型拡張(れんぞくせんけいかくちょう、英: continuous linear extension)とは、次に述べる手順のことを指す: 完備なノルム線型空間 上にある線型変換を定義する時、初めに 内の稠密な部分集合上に線型変換 を定義し、その後、後述の定理によって、 を全空間へと拡張することが便利となることが、しばしばある。この結果として得られる拡張は線型かつ有界(したがって、連続)である。 (ja)
  • 数学の関数解析学の分野における連続線型拡張(れんぞくせんけいかくちょう、英: continuous linear extension)とは、次に述べる手順のことを指す: 完備なノルム線型空間 上にある線型変換を定義する時、初めに 内の稠密な部分集合上に線型変換 を定義し、その後、後述の定理によって、 を全空間へと拡張することが便利となることが、しばしばある。この結果として得られる拡張は線型かつ有界(したがって、連続)である。 (ja)
dbo:wikiPageID
  • 2729172 (xsd:integer)
dbo:wikiPageLength
  • 2874 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91972873 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の関数解析学の分野における連続線型拡張(れんぞくせんけいかくちょう、英: continuous linear extension)とは、次に述べる手順のことを指す: 完備なノルム線型空間 上にある線型変換を定義する時、初めに 内の稠密な部分集合上に線型変換 を定義し、その後、後述の定理によって、 を全空間へと拡張することが便利となることが、しばしばある。この結果として得られる拡張は線型かつ有界(したがって、連続)である。 (ja)
  • 数学の関数解析学の分野における連続線型拡張(れんぞくせんけいかくちょう、英: continuous linear extension)とは、次に述べる手順のことを指す: 完備なノルム線型空間 上にある線型変換を定義する時、初めに 内の稠密な部分集合上に線型変換 を定義し、その後、後述の定理によって、 を全空間へと拡張することが便利となることが、しばしばある。この結果として得られる拡張は線型かつ有界(したがって、連続)である。 (ja)
rdfs:label
  • 連続線型拡張 (ja)
  • 連続線型拡張 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of