abstract |
Approaches for spacer chamfering in a replacement metal gate (RMG) device are provided. Specifically, a semiconductor device is provided with a set of fins formed from a substrate; a silicon-based layer conformally deposited over the set of fins; an etch-stop layer (e.g., titanium nitride (TiN)) formed over the silicon-based layer, the etch-stop layer being selective to at least one of: silicon, oxide, and nitride; a set of RMG structures formed over the substrate; a set of spacers formed along each of the set of RMG structures, wherein a vertical layer of material from each of the set of spacers is removed selective to the etch-stop layer. By chamfering each sidewall spacer, a wider area for subsequent work-function (WF) metal deposition is provided. Meanwhile, each transistor channel region is covered by the etch-stop layer (e.g., TiN), which maintains the original gate critical dimension during reactive ion etching. |