Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.

Free full text 


Logo of pheelsevierLink to Publisher's site
Semin Immunol. 2019 Jun; 43: 101300.
Published online 2019 Nov 23. https://doi.org/10.1016/j.smim.2019.101300
PMCID: PMC7128104
PMID: 31771760

Global virus outbreaks: Interferons as 1st responders

Abstract

Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.

Keywords: Interferons-α/β, Antiviral, Immune response

1. Introduction

Interferons (IFNs) are critical effectors of both innate and adaptive immune responses, associated with the development of immune cell populations and their activation to respond to pathogens, cancers and other insults. IFNs are classified according to the receptors through which they signal (Fig. 1 ). Type I IFNs (-α, -β, -δ, -ε, -ζ, -κ, -τ, and -ω), signal through the IFN-α/β receptor (IFNAR), and are one of three major classes of IFNs, the other two being type II IFN (-γ) and type III IFNs (-λ1, -λ2, -λ3). Type I IFNs were discovered for their effectiveness to inhibit virus replication [1], and have since been shown to exert critical effects on the development and activation of immune cell subsets. Given both their antiviral and immunomodulatory effects, type I IFNs, alone, or in combination with other therapies, have been examined clinically in a variety of chronic and acute viral infections. This review will highlight the antiviral and immunomodulatory effects of type I IFNs, the mechanisms by which viruses inhibit and evade a host type I IFN response, and describe recent therapeutic applications for recombinant type I IFNs in the treatment of viral infections.

Fig. 1

IFNs and their cognate receptors. IFNs are classified based on the receptors through which they signal. Type I IFNs (-α, -β, -δ, -ε, -ζ, -κ, -τ, and -ω) bind to and activate the IFN-α/β receptor (IFNAR) complex. Type II IFN (-γ) activates the IFN-γ receptor 1 and type III IFNs (-λ1, -λ2, -λ3) signal through a receptor complex made up of IL28RA and IL10R2.

1.1. Induction of type I IFNs, receptor activation and signaling

Type I IFNs are induced following detection of pathogen-associated molecular patterns (PAMPs) and damage/danger-associated molecular patterns (DAMPs) by innate pattern recognition receptors (PRRs). Expressed by both immune and non-immune cells, PRRs comprise Toll-like receptors (TLRs), C-type lectin receptors (CLRs), retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), Aim2-like receptors (ALRs) and cyclic GMP-AMP synthase (cGAS), which together bind a diverse range of extracellular and endosomal PAMPs and DAMPs (Fig. 2 ). PRR signaling results in the expression of type I IFNs and pro-inflammatory cytokines mediated by three essential transcription factors: IFN regulatory factor (IRF)3, IRF7, and nuclear factor-κB (NF-κB) [[2], [3], [4], [5], [6]]. Virus-inducible IFN-β expression is upregulated by the formation of an IFN-β enhanceosome, which is comprised of NF-κB, IRF3, IRF7 and c-Jun at the IFN-β promoter [7,8]. The induction of type I IFNs provides the first line of defense against many diverse pathogens. Indeed, IFN dysregulation can lead to increased virus susceptibility: RIG-I-/- and MDA5-/- mice produce lower levels of type I IFNs and are more susceptible to infection by RNA viruses, including Japanese encephalitis virus (JEV), encephalomyocarditis virus (EMCV), and West Nile virus (WNV) [9,10].

Fig. 2

Pattern Recognition Receptor activation leads to type I IFN production. Binding of PAMPs and DAMPs to host PRRs (TLRs, CLRs, RLRs, NLRs, ALRs, and cGAS) induces signaling cascades that activate IRF3, IRF7 and NF-κB, resulting in the production of type I IFNs-α/β and pro-inflammatory cytokines.

Type I IFNs bind to their cognate transmembrane receptor, IFNAR, comprised of an IFN-α/β receptor alpha chain (IFNAR1) and an IFN-α/β receptor beta chain (IFNAR2). Receptor binding leads to activation of multiple intracellular signaling cascades (Fig. 3 ). Best known is activation of the canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, whereby IFNAR-associated JAK1 and TYK2 participate in the recruitment of STATs (1–6) to IFNAR and their subsequent phosphorylation-activation to form homo- or heterodimers [[11], [12], [13], [14]]. Unlike other STAT dimers, STAT1-STAT2 heterodimers also bind IRF9 to form the IFN-stimulated gene (ISG) factor 3 (ISGF3) complex [15,16]. In the nucleus, ISGF3 binds to IFN-sensitive response elements (ISREs), 5′-AGTTTN3TTTC-3′ [15,16], while other STAT dimers bind to IFN-γ activated sequence (GAS) elements, 5′-TTCN3GAA-3′, to initiate transcription of ISGs [17]. Several non-canonical pathways are also activated by type I IFNs, including the p38-associated mitogen-activated protein kinase (MAPK) signaling pathway [18] to modulate histone modification and early gene expression [19], and the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) pathway, to regulate mTORC1 activation, protein synthesis and cap-dependent mRNA translation [20][D. Saleiro et al, this issue].

Fig. 3

Type I IFN signaling. IFNs-α/β bind to IFNAR, inducing the phosphorylation-activation of tyrosine kinases JAK1 and TYK2. JAK1 and TYK2 activation initiates multiple canonical and non-canonical signaling cascades that are critical for the regulation of cellular processes and the expression of ISGs for the innate immune response.

In humans, IFN-inducible transcriptional and translational regulation of ISGs results in the expression of over 7000 genes, that contribute to cellular processes including metabolism, survival, migration, activation and, importantly, innate host defense against viral infections [21]. Notably, many ISGs have been identified with functions that interfere with different stages of viral replication and transmission (Table 1 ). Interestingly, in vitro studies that examined the effects of IFN-ß against Coxsackievirus B3 infection, identified a novel function of IFN-ß in regulating glucose metabolism, mediated by activation of the PI3K/AKT signaling pathway, important for the induction of a rapid antiviral response [59].

Table 1

Antiviral ISGs with known functions.

ISG(s)Function(s)Reference(s)
APOBEC3Cytidine deamination of single-stranded viral DNA (deoxycytidine to deoxyuridine) to inhibit retrovirus replication.[22,23]
BST2Binds and inhibits the release of budding progeny virions.[24,25]
DDX58RIG-I detects ssRNA to induce MAVS and IRF-dependent type I IFN production.[9,[26], [27], [28]]
DDX60Enhances RIG-I and MDA5-dependent type I IFN production.[29,30]
EIF2AK2Detects dsRNA and phosphorylates EIF2α to inhibit both cellular and viral mRNA translation.[31,32]
IFIH1Detects dsRNA to induce MAVS and IRF-dependent type I IFN production.[26,28]
IFITM1, IFITM2, and IFITM3Inhibit viral entry. IFITM3 inhibits the formation of fusion pores in the late endosome.[[33], [34], [35]]
IRF1 and IRF7Induce ISG expression in the absence of type I IFN signaling.[36,37]
ISG15Regulates host and viral protein function by ISGylation.[[38], [39], [40]]
ISG20Cleaves ssRNA to inhibit viral RNA synthesis and replication.[41,42]
MX1Forms oligomeric ring structures that bind viral nucleoproteins to inhibit replication.[[43], [44], [45]]
OAS1, OAS2, and OAS3Detect dsRNA and synthesize 2′–5′ olygoadenylates, which are the substrate for RNaseL activation.[[46], [47], [48]]
OASLEnhances RIG-I activation.[49]
RSAD2Restricts viral budding by modulating lipid synthesis.[50]
SAMHD1Depletes intracellular dNTPs to inhibit viral replication.[[51], [52], [53], [54]]
TRIM5Binds virus capsid proteins to inhibit viral infection.[55]
TRIM25Ubiquitinates RIG-I to enhance type I IFN induction.[56]
ZC3HAV1Inhibits viral mRNA expression and enhances RIG-I-dependent type I IFN induction.[57,58]

1.2. Effects of type I IFNs on the immune system

Type I IFNs have diverse effects on the immune system, beyond the induction of antiviral ISGs, ranging from regulation of leukocyte development and differentiation, to immune cell recruitment and activation. At the earliest stages of leukocyte development, IFN-α signaling has been shown to affect the renewal and proliferation of hematopoietic stem cells (HSCs) [60,61]. In mice, IFN-α enhances the proliferation of dormant HSCs in a STAT1- and AKT-phosphorylation dependent manner [60]. Moreover, chronic IFN-α signaling can lead to HSC exhaustion, resulting in a reduction in the number of quiescent HSCs in the bone marrow [60]. As a result, HSCs that lack the negative regulator of type I IFN signaling, IRF2, fail to outcompete IRF2+/- HSCs in competitive repopulation assays [61].

Type I IFNs also regulate the expression of chemokines and cell adhesion receptors, thereby affecting the trafficking of different immune cell populations. IFN-α/β signaling upregulates chemokine (C-C motif) ligand (CCL) 2 [62], CCL3, CCL4 [63], CCL5 [64], CCL7 [65], CCL12 [66], chemokine (C-X-C motif) ligand (CXCL) 9 [67], CXCL10 [66,67], CXCL11 [68] and cluster of differentiation (CD) 69 [69], while downregulating the expression of CXCL1, CXCL2 [[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72]]. Briefly, CCL2, CCL7 and CCL12 are chemoattractants for monocytes [62,73], while CCL5, CXCL9, CXCL10, and CXCL11 are chemoattractants for T cells [74,75] – CCL2 also recruits memory T cells [76]. CCL3 and CCL4 are chemoattractants for monocytes and macrophages [77], and CXCL1 and CXCL2 recruit neutrophils [70]. IFN-α/β-inducible CD69 expression promotes the retention of lymphocytes in lymph nodes by inhibiting sphingosine 1-phosphate receptor-1 (S1P1) [69], thereby promoting antigen presentation and lymphocyte activation.

In addition to influencing chemokine expression, type I IFNs also regulate the survival and activation of innate and adaptive immune cells. Although type I IFNs inhibit the recruitment of neutrophils by suppressing CXCL1 and CXCL2 expression, IFN-α has been shown to promote neutrophil survival by inducing the expression of cellular inhibitor of apoptosis 2 (cIAP2) via STAT1 and STAT3 [78]. In NK cells, type I IFN signaling enhances IFN-γ production [79], cell survival [80], and cytotoxicity against tumor cells and virus-infected cells [[80], [81], [82], [83]] through upregulation of Fas ligand (FasL) expression [84]. Moreover, type I IFN signaling in macrophages is important for phagocytosis [85] and nitric oxide synthase 2 (NOS2) expression [66], both of which contribute to the clearance of pathogens, tumor cells and damaged tissues.

Monocytes express high levels of IFNAR on their cell surface [86], and in the presence of IFN-α and granulocyte-macrophage colony-stimulating factor (GM-CSF), rapidly differentiate into DCs that are capable of presenting antigens, priming CD4+ T helper 1 (Th1) cells, and activating CD8+ T cells [[87], [88], [89], [90]]. Type I IFN signaling in conventional DCs (cDCs) further directs Th1 immunity and T cell activation by boosting IL-12 production in the presence of PAMPs [91]. IFN-α/β enhances the expression of major histocompatibility complex (MHC) class I, MHC class II, and the co-stimulatory factors: CD40, CD80, and CD86 [92,93]. Plasmacytoid DCs (pDCs) also produce considerably more IFN-α/β in the presence of PAMPs when compared to other leukocytes, due to high levels of constitutive IRF7 expression [94,95].

Type I IFNs regulate effector and memory CD4+ and CD8+ T cells [reviewed in [96]]. For cytotoxic CD8+ T cells, IFNs-α/β upregulate IFN-γ, perforin and granzyme B expression [97]. Curtsinger et al. [97] showed that in the absence of IFN-α and IL-12 signaling, CD8+ T cells fail to upregulate perforin or granzyme B expression even in the presence of antigen and co-stimulation; therefore, IFN-α and IL-12 may provide a necessary third signal for CD8+ T cell effector function. In the context of viral infections, type I IFNs are also critical for CD8+ T cell clonal expansion and memory formation [[98], [99], [100]], and contribute to Eomesodermin (Eomes) and T-box transcription factor TBX21 (T-bet) expression [101]. Using IFNAR -/- cells, Le Bon et al. [102] showed that intact type I IFN signaling affects the ability for CD4+ T cells to provide B cell help, as well as the formation of antigen-specific antibody responses. In regard to other T cell subsets, type I IFNs downregulate both Th2 and Th17 differentiation by inhibiting GATA3 and IL-17 expression, respectively [103,104].

IFN-β-/- mice exhibit a defect in B cell maturation resulting in significantly fewer circulating immunoglobulin (Ig) M+ B cells than in wild-type mice [105]. This defect is characterized by a reduction in pro-B cell and B220+, IgM+ and CD23+ B cell populations in the bone marrow. Moreover, IFN-β-/- B220+ B cells express significantly lower levels of IgM and CD23 than wild-type B220+ B cells [105]. Like monocytes, B cells also express high levels of surface IFNAR [86], and IFN-α/β signaling is important for B cell survival and activation. Type I IFN signaling upregulates the surface expression of MHC class I, MHC class II, L-selectin, CD69, CD86, and CD25 on B cells [86,106,107], which prime them for B cell receptor (BCR) activation [105]. IFN-β expression by transitional stage 1 (T1) B cells in the spleen is critical for their survival and development [108]. Furthermore, IFN-α induces B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) expression by DCs [[109], [110], [111]], which promote B cell Ig class switching [112,113]. Virus-activated pDCs also direct antigen-specific B cell differentiation into Ig-secreting plasma cells mediated by a combination of type I IFN and IL-6 signaling [114].

2. Viral antagonism of type I IFN responses

Given the effectiveness of IFN-inducible antiviral responses in limiting infection and viral replication in a largely cell-independent manner, irrespective of the virus, viruses have developed different mechanisms to inhibit type I IFN induction and signaling, and the activity of antiviral ISGs (Table 2 ). Viruses may encode in their genomes multiple different proteins that target different facets of type I IFN-inducible antiviral responses, or a single multifunctional protein: herpes simplex virus (HSV) encodes several proteins - ICP0, ICP27, ICP34.5, US11 - directed against different IFN-inducible targets, whereas influenza A virus (IAV), encodes a multifunctional viral protein - NS1 - with the capacity to interfere with multiple host pathways and proteins involved in an antiviral response.

Table 2

Virus-encoded proteins that antagonize the type I IFN response.

VirusViral Protein(s)Function(s)Reference(s)
Chikungunya virus (CHIKV)nsP2Inhibits type I IFN-inducible JAK-STAT signaling.[115]
Coxsackievirus2A proteaseCleaves MAVS and MDA5 to block type I IFN induction.[116]
3C proteaseCleaves RIG-I, MAVS and TRIF to block type I IFN induction.[116,117]
Dengue virus (DENV)NS2A, NS4A and NS4BInhibit IFN-β-inducible STAT1 phosphorylation and ISG expression.[118,119]
NS2B and NS3Inhibit type I IFN production.[120]
NS5Binds STAT2 and inhibits IFN-α-inducible STAT2 phosphorylation.[121]
Ebola virus (EBOV)VP24Binds STAT1 and karyopherin-α1 to inhibit nuclear translocation of phosphorylated STAT1.[122,123]
VP35Binds dsRNA to suppress RLR-dependent IRF3 activation and IFN-β induction.[124,125]
Epstein-Barr virus (EBV)BRLF1Inhibits IRF3 and IRF7 to suppress IFN-β induction.[126]
BZLF1Inhibits IRF7 activation to suppress IFN-β induction.[127]
LF2Binds IRF7 to inhibit IFN-α induction.[128]
Hepatitis B virus (HBV)HBxBinds RIG-I, TRAF3 and MAVS to inhibit type I IFN induction.[129]
PolBinds karyopherin-α and PKC-δ to inhibit IFN-α-inducible STAT1 phosphorylation and nuclear translocation of STAT1-STAT2 heterodimers. Also binds DDX3 to inhibit TBK1 and IKKε-dependent type I IFN induction.[130,131]
Hepatitis C virus (HCV)Core proteinInduces SOCS3 expression to inhibit IFN-α-inducible STAT1 phosphorylation.[132]
E2Inhibits PKR activation.[133]
NS3 and NS4AInhibit TLR3 and MAVS-dependent IRF3 activation and IFN-β induction.[134,135]
NS5ABinds PKR to inhibit PKR dimerization. Also binds STAT1 to inhibit IFN-α-inducible STAT1 phosphorylation and ISG expression.[136,137]
Human cytomegalovirus (HCMV)IE72Interacts with STAT2 to inhibit ISGF3 binding to ISREs.[138,139]
IE86Inhibits IFN-β production.[140]
pIRS1 and pTRS1Bind dsRNA to inhibit PKR and OAS activation.[141]
pUL26Inhibits ISGylation.[142]
Human immuno-deficiency virus (HIV)TatInhibits PKR activation.[143]
VifInhibits APOBEC3G mRNA translation and enhances its post-translational degradation.[144]
VpuInhibits the antiviral activity of tetherin.[24]
VpxEnhances degradation of SAMHD1.[51]
Human parainfluenza virus (HPIV)CInhibits type I IFN production and signaling.[145]
VInhibits type I IFN production and contributes to STAT2 degradation.[146]
Human papillomavirus (HPV)E6 and E7Inhibit ISG expression. E6 inhibits type I IFN-inducible STAT1 phosphorylation and ISRE activation. Also, E6 binds IRF3 to inhibit type I IFN production.[147,148]
Human respiratory syncytial virus (HRSV)NS1 and NS2Inhibit the activation and nuclear translocation of IRF3 to inhibit type I IFN induction.[149]
Human rhinovirus (HRV)- unknown -HRV induces minimal IRF3 activation and IFN-β production in untreated cells in comparison to cells treated with cycloheximide.[150]
Herpes simplex virus (HSV)ICP0Inhibits IRF3 activation.[151]
ICP27Inhibits IFN-α-inducible STAT1 phosphorylation and nuclear translocation.[152]
ICP34.5Reverses PKR-dependent eIF2α phosphorylation.[153]
US11Binds dsRNA to inhibit PKR and RNaseL activation.[154]
Influenza A virus (IAV)NS1Binds RIG-I, CPSF4, and PABPII to suppress type I IFN production. Binds dsRNA to inhibit PKR and RNaseL activation. Inhibits IFNAR1 expression and IFN-β-inducible STAT phosphorylation. Induces SOCS1 expression.[[155], [156], [157], [158], [159], [160]]
Influenza B virus (IBV)NS1Inhibits type I IFN production and binds dsRNA to inhibit PKR activation.[161]
Japanese encephalitis virus (JEV)NS4AInhibits type I IFN-inducible STAT1 and STAT2 phosphorylation, and ISRE activation.[162]
NS5Inhibits type I IFN-inducible STAT1 phosphorylation and ISG expression.[163,164]
Lassa virus (LASV)NPInhibits the nuclear translocation of IRF3 and IFN-β induction.[165,166]
Lymphocytic choriomeningitis virus (LCMV)NPBinds RIG-I and MDA5. Inhibits the nuclear translocation of IRF3 and IFN-β induction.[166,167]
Marburg virus (MARV)VP24Inhibits type I IFN-inducible STAT1 and STAT2 phosphorylation.[168]
VP35Binds dsRNA to suppress RLR-dependent IRF3 activation and IFN-β induction.[169]
VP40Inhibits type I IFN-inducible STAT1 phosphorylation.[170]
Measles virus (MeV)C and PInhibit IFN-α-inducible ISRE activation.[171]
NInhibits nuclear translocation of STAT1 and STAT2.[171]
VBinds STAT2 to inhibit type I IFN-inducible ISRE induction.[172]
Middle East respiratory syndrome coronavirus (MERS-CoV)M, ORF4b and ORF5Inhibit IRF3 activation and IFN-β induction. Also inhibit ISRE activation.[173]
ORF4aBinds dsRNA to inhibit RIG-I and MDA5-dependent IFN-β induction. Also inhibits ISRE activation.[173,174]
Mumps virus (MuV)VInhibits IFN-β-inducible STAT1 and STAT2 phosphorylation.[175]
Nipah virus (NiV)V, P and WInhibit IFN-β-inducible STAT1 phosphorylation and ISRE activation.[176]
Poliovirus (PV)2A proteaseCleaves MAVS and MDA5 to block type I IFN induction.[116]
3C proteaseCleaves RIG-I to block type I IFN induction.[116]
Rabies virus (RABV)PBinds STAT1, STAT2, and STAT3 to inhibit nuclear translocation of phosphorylated STAT proteins, and ISRE and GAS activation. Also inhibits IRF3 activation and IFN-β induction.[[177], [178], [179]]
Rotavirus (RV)NSP1Enhances IRF3 and IRF7 degradation to inhibit type I IFN induction. Also inhibits NF-B activation.[180,181]
Severe acute respiratory syndrome coronavirus (SARS-CoV)MBinds RIG-I, TRAF3, TBK1 and IKKε to inhibit IRF3 and IRF7-dependent ISRE activation, and type I IFN production.[182,183]
Nsp1Enhances host mRNA degradation and inhibits mRNA translation to suppress type I IFN expression. Also inhibits IRF3 and IRF7 activation, and IFN-α-inducible STAT1 phosphorylation.[[184], [185], [186]]
Nsp3Inhibits IRF3 phosphorylation and nuclear translocation.[187]
ORF6Binds karyopherin-α2 and -β1 to inhibit nuclear translocation of STAT1, and ISG expression.[188]
Vaccinia virus (VACV)E3LBinds dsRNA to inhibit PKR and RNaseL activation. Also inhibits IRF3 activation and IFN-β induction.[189]
K3LInhibits PKR activation.[190]
vIFN-α/βRcBinds type I IFN to inhibit IFN signaling.[191]
West Nile virus (WNV)NS4BInhibits type I IFN-inducible STAT1 phosphorylation and ISRE activation.[119]
NS5Inhibits IFN-β-inducible STAT1 phosphorylation and ISG expression.[192,193]
Yellow fever virus (YFV)NS4BInhibits type I IFN-inducible STAT1 phosphorylation and ISRE activation.[119]
NS5Binds STAT2 to inhibit ISGF3 binding to ISREs.[194]
Zika Virus (ZIKV)NS1, NS4A, NS5Inhibit type I IFN induction and signaling.[195]

3. Type I IFNs as broad-spectrum antivirals

Newly emerging and re-emerging virus infections pose a serious threat to global health (Fig. 4 ). In the absence of targeted vaccines for newly emerging virus infections, or sufficient vaccine availability for re-emerging virus infections, there is an obvious need for direct antivirals to deploy during a pandemic. Viruses mutate to become resistant to pathogen-specifc antivirals, necessitating the development of broad-spectrum pleiotropic antivirals. Type I IFNs are prototypical candidate broad-spectrum antivirals, specifically because of their rapid induction in response to any and all virus infections, the pleiotropic nature of their effects on inhibition of different stages of viral replicative cycles and their effects on activating immune cells to clear virus infections. Not surprisingly, therefore, as mentioned above, viruses have evolved to evade an IFN response, specifically because it is so critical for the host immune response to infection. However, given the pleiotropic nature of the antiviral effects of IFNs, virus-targeted inhibition of some of these elements may still permit a partial - and effective - IFN response. To date, however, type I IFNs have seen limited clinical use for the treatment of acute and chronic infections.

Fig. 4

Extent of global viral infections. Graphical depiction of global viral outbreaks and summary of the impact of global viral infections based on information gathered from the World Health Organization (WHO) [196]. CHIKV (grey), chikungunya virus; EBOV (red), Ebola virus; IAV (purple), influenza A virus; MERS-CoV (blue), Middle-East respiratory syndrome coronavirus; LASV (pink), Lassa virus; RVFV (blue-purple), Rift Valley fever virus; SARS-CoV (yellow-green), severe acute respiratory syndrome coronavirus; WNV (green), West Nile virus; YFV (brown), yellow fever virus; ZIKV (gold), Zika virus; DENV, dengue virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HPV, human papillomavirus; HSV-1/2, herpes simplex virus type 1/2; PV, poliovirus.

Pegylated recombinant IFN-α-2a/2b (PEG-INF) in combination with ribavirin, a nucleoside inhibitor of viral RNA synthesis, remains the standard of care for treatment for chronic hepatitis C virus (HCV) infection in those jurisdictions where direct antiviral agents (DAA) are unavailable. Type I IFNs were first approved for single-agent therapeutic use in the context of HCV infection in the 1990s. A major limitation for the clinical use of type I IFNs for HCV has been the prevalence of adverse events, with the most common adverse events including fatigue, headache, pyrexia, rigors, myalgia, nausea, abdominal pain, anxiety, depression, psychosis and insomnia [197]. Serious adverse events include neutropenia, thrombocytopenia, hyper- and hypothyroidism, pancreatitis, type I diabetes mellitus, and irreversible pulmonary hypertension [[198], [199], [200]]. Notably, these adverse advents are associated with sustained IFN treatment. Pegylation of recombinant IFN improved pharmacokinetics to allow for longer dosing intervals [201]. The clinical efficacy of IFN therapy is determined by measuring serum HCV RNA levels, where a sustained virological response (SVR) is defined by undetectable HCV RNA levels at 24 weeks following the completion of the IFN therapy. Patients infected with HCV genotype (G)2, G2, or G3, exhibit SVR rates of between 76–82% [[202], [203], [204], [205]], in comparison to SVR rates of approximately 67% and 40–50% for patients infected with HCV G4 and G1, respectively [[206], [207], [208], [209], [210], [211]]. Furthermore, patients with HCV G1/G2/G3 infections who exhibit a rapid virological response (RVR), defined by undetectable serum HCV RNA after 4 weeks of treatment, are most likely to achieve a SVR [212,213]. In addition to RVR, other predicators of SVR include low expression of the suppressor of cytokine signaling, SOCS3, mRNA and protein in the liver [214], whereas elevated SOCS3 expression [215], and polymorphisms in MX1 and IFNAR1 gene promoter regions are associated with non-response [216,217]. A lack of variation in the gene sequence encoding the PKR-binding domain within E2 and NS5A of HCV G1/G4 may contribute to the increased resistance to PEG-INF and ribavirin combination therapy [218].

PEG-INF has also shown therapeutic efficacy in patients with chronic hepatitis B virus (HBV) infection, as evidenced by seroconversion from hepatitis B e-antigen (HBeAg) positivity (active HBV replication) to HBeAg negativity and detectable levels of anti-HBe antibodies [[219], [220], [221]]. In a study conducted by Keating et al. [221], 42% of HBV infected patients treated with PEG-INF achieved seroconversion, while 12% cleared the virus one year following onset of treatment. In the same study, inactive HBV was detected in another 17% of treated patients.

In a single patient case study of chronic hepatitis E virus (HEV) infection, weekly PEG-INF treatment resulted in a decrease in serum HEV RNA by week 2 and a complete virological response by week 4 [222]. In the same patient, serum HEV RNA remained undetectable after 5 months. An SVR was seen in another patient with chronic HEV infection following PEG-INF treatment, with undetectable serum HEV RNA by week 3 that persisted for 6 months after cessation of PEG-INF treatment [223]. PEG-INF treatment induces ISG transcription and clearance of HEV infection in humanized mice [224].

Apart from their clinical use for chronic virus infections, little consideration has been given to the application of type I IFNs for severe acute virus infections. Between November 2002 and August 2003 over 8000 cases of severe acute respiratory syndrome coronoavirus (SARS-CoV) infection were reported worldwide, resulting in 916 deaths [196]. In the absence of any vaccine or approved DAAs, treatment was limited to corticosteroids, ribavirin and supportive care [225]. IFN alfacon-1 is a synthetic IFN-α, engineered such that at each position along the 165 amino acids of the protein the most frequently represented amino acid among all the IFN-α subtypes is present [226]. Results from in vitro and in vivo studies identify that IFN alfacon-1 consistently exhibits superior antiviral potency compared with other IFN-α subtypes, attributed to its higher binding affinity for IFNAR [[226], [227], [228]]. During the SARS outbreak of 2003, in a pilot clinical study in Toronto, Canada, evidence was provided that treatment with IFN alfacon-1 was associated with more rapid resolution of radiographic lung abnormalities and better oxygen saturation compared with those infected patients who received only corticosteroids [229]. IFN-treated patients exhibited lower levels of creatine kinase and more rapid return of lactate dehyrogenase levels to normal, indicative of improvement to SARS-associated lung parenchymal disease. Notably, given the short treatment time of 10 days, patients tolerated IFN treatment well with minimal adverse events and no exacerbation of any virus-associated symptoms. The single clinical adverse event reported was fever, likely associated with the underlying disease. Subsequent in vitro studies using human bronchial epithelial cells revealed that type I IFN treatment directly inhibits SARS-CoV replication [230,231], overriding the inhibitory effects of the virally encoded factors Nsp1, Nsp3 and ORF6. In non-human primate studies, administration of IFN prior to SARS-CoV infection in cynomolgus macaques limited viral replication and pulmonary damage [226].

Most recently, during the unprecedented 2013–2016 Ebola virus (EBOV) disease outbreak in West Africa, there were no approved therapies or vaccine available. Earlier studies in non-human primates provided evidence that IFN-α/β treatment reduced blood viremia and prolonged the survival of infected animals, [232,233], this despite the viral encoded IFN inhibitory factors, VP24 and VP35. Moreover, when combined with a monoclonal antibody cocktail directed against EBOV glycoproteins (ZMab), adenovirus-vectored IFN-α therapy extended the treatment window post-infection of non-human primates and suppressed viremia, leading to survival and robust immune responses [234]. Using transcription-competent virus-like particles (trVLP) to model EBOV Zaire infection in vitro, requiring only level 2 containment, McCarthy et al. screened a panel of candidate antiviral drugs and assessed their ability to suppress viral replication in human 293 T cells [235]. IFN-α and IFN-β, along with the estrogen receptor modulator, toremifene, and number of viral polymerase inhibitors - lamivudine, zidovudine, tenofovir, and favipiravir - inhibited trVLP replication when administered 24 h post-infection. Notably, IFN-ß exhibited the most potent antiviral activity. Two- and three-drug combinations were tested using the same in vitro model. The two- and three-drug combinations that most potently inhibited EBOV trVLP replication were IFN-β + lamivudine, and IFN-β + lamivudine + zidovudine, respectively. Moreover, these same drug combinations inhibited infectious recombinant EBOV Zaire replication in 293 T cells [235]. Given the superior antiviral potency of IFN-β in both the trVLP studies and when used against EBOV Zaire, IFN-β was administered to 9 patients infected with EBOV in a proof-of-concept, single arm clinical study in Guinea, during the EBOV disease outbreak [236]. When compared to EBOV infected patients who only received standard supportive care at the same treatment facility, IFN-β treatment was associated with faster viral clearance from the blood, earlier resolution of disease symptoms and better survival [235]. Patients tolerated IFN treatment well with no exacerbated disease symptoms. These preliminary clinical findings provide a rationale for further clinical evaluation of IFN-ß for the treatment of EBOV infection.

Type I IFNs have also been shown to inhibit acute influenza A virus (IAV) infections, in vitro [155,237]. In primary human lung explants, IFN alfacon-1 inhibited avian H5N1 and pandemic H1N1 IAV replication, while upregulating the expression of several antiviral ISGs - PKR, OAS, and ISG15 [155]. Treatment of IAV-infected human lung A549 cells with IFN-β inhibits viral replication in a dose-dependent manner [237]. In the context of another acute virus infection, West Nile Virus, Type I IFNs have been shown to increase incorporation of microRNAs (miRNAs) into extracellular vesicles in A549 cells [238]. These enriched miRNAs regulate genes involved in antiviral and pro-inflammatory responses.

The orally administered, low molecular weight IFNAR2 agonist CDM-3008, has been shown to mimic the action of IFN-α by inhibiting both HCV [239] and HBV [240] infection in vitro. CDM-3008 is able to induce JAK-STAT signaling and upregulate ISG expression. Adenovirus-vectored IFN-alfacon-1, which has long-lasting antiviral activity, protects mice, hamsters and non-human primates in animal models of enterovirus (EV) 71 [241], EBOV [234,242], Chikungunya virus (CHIKV) [243], and Rift Valley fever virus (RVFV) infection [244]. A single dose of adenovirus-vectored IFN-α (DEF201), given intranasally within 6 h post-RVFV challenge, significantly reduced viral loads in the serum, liver and spleen of hamsters [244]. DEF201, when administered prophylactically 21 days to 24 h prior to CHIKV challenge in mice, reduced CHIKV viral titers [243]. Furthermore, administration of DEF201 at 6 h and 12 h post-lethal EV71 infection of mice resulted in full and partial protection, respectively [241]. Viewed together, these in vivo studies provide a rationale for the evaluation of the prophylactic and therapeutic effects of adenovirus-vectored IFN-α for the treatment of severe acute virus infections when vaccines and/or approved antiviral agents are unavailable.

4. Concluding remarks

The preceding serves to illustrate the pleiotropic nature of type I IFNs in inhibiting virus replication, irrespective of the virus. Virus outbreaks pose a serious threat to global health, as exemplified by the recent outbreaks of SARS CoV, avian H5N1 influenza, Zika virus, WNV and EBOV. In the absence of a vaccine targeted against a newly emerging or re-emerging virus, antiviral drugs serve to limit viral spread. Viruses mutate to specifically evade pathogen-specific antivirals, a case in point being the emergence of Tamiflu-resistant influenza N1 strains [245]. A preferred strategy to limit virus outbreaks would be to deploy broad-spectrum antiviral agents that would exhibit pleiotropic effects [21], including invoking metabolic events important for the induction of a rapid antiviral response [59], targeting different stages of a virus replicative cycle and also invoking a robust immune response against the virus, regardless of the virus. Type I IFNs present as ideal broad-spectrum antiviral candidates and in limited clinical studies have demonstrated therapeutic effectiveness against severe acute virus infections. Their further evaluation is warranted.

References

1. Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 1957;147:258–267. [Abstract] [Google Scholar]
2. Au W.C., Moore P.A., LaFleur D.W., Tombal B., Pitha P.M. Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes. J. Biol. Chem. 1998;273:29210–29217. [Abstract] [Google Scholar]
3. Juang Y.T., Lowther W., Kellum M., Au W.C., Lin R., Hiscott J., Pitha P.M. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc. Natl. Acad. Sci. U. S. A. 1998;95:9837–9842. [Europe PMC free article] [Abstract] [Google Scholar]
4. Libermann T.A., Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 1990;10:2327–2334. [Europe PMC free article] [Abstract] [Google Scholar]
5. Matsusaka T., Fujikawa K., Nishio Y., Mukaida N., Matsushima K., Kishimoto T., Akira S. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc. Natl. Acad. Sci. U. S. A. 1993;90:10193–10197. [Europe PMC free article] [Abstract] [Google Scholar]
6. Sato M., Hata N., Asagiri M., Nakaya T., Taniguchi T., Tanaka N. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett. 1988;441:106–110. [Abstract] [Google Scholar]
7. Falvo J.V., Parekh B.S., Lin C.H., Fraenkel E., Maniatis T. Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Mol. Cell. Biol. 2000;20:4814–4825. [Europe PMC free article] [Abstract] [Google Scholar]
8. Panne D., Maniatis T., Harrison S.C. An atomic model of the interferon-beta enhanceosome. Cell. 2007;129:1111–1123. [Europe PMC free article] [Abstract] [Google Scholar]
9. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105. [Abstract] [Google Scholar]
10. Errett J.S., Suthar M.S., McMillan A., Diamond M.S., Gale M., Jr The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J. Virol. 2013;87:11416–11425. [Europe PMC free article] [Abstract] [Google Scholar]
11. Yan H., Krishnan K., Greenlund A.C., Gupta S., Lim J.T., Schreiber R.D., Schindler C.W., Krolewski J.J. Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J. 1996;15:1064–1074. [Europe PMC free article] [Abstract] [Google Scholar]
12. Chen X., Vinkemeier U., Zhao Y., Jeruzalmi D., Darnell J.E., Jr., Kuriyan J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998;93:827–839. [Abstract] [Google Scholar]
13. Braunstein J., Brutsaert S., Olson R., Schindler C. STATs dimerize in the absence of phosphorylation. J. Biol. Chem. 2003;278:34133–34140. [Abstract] [Google Scholar]
14. Fish E.N., Platanias L.C. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol. Cancer Res. 2014;12:1691–1703. [Europe PMC free article] [Abstract] [Google Scholar]
15. Fu X.Y., Kessler D.S., Veals S.A., Levy D.E., Darnell J.E., Jr. ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1990;87:8555–8559. [Europe PMC free article] [Abstract] [Google Scholar]
16. Qureshi S.A., Salditt-Georgieff M., Darnell J.E., Jr. Tyrosine-phosphorylated Stat1 and Stat2 plus a 48-kDa protein all contact DNA in forming interferon-stimulated-gene factor 3. Proc. Natl. Acad. Sci. U. S. A. 1995;92:3829–3833. [Europe PMC free article] [Abstract] [Google Scholar]
17. Ehret G.B., Reichenbach P., Schindler U., Horvath C.M., Fritz S., Nabholz M., Bucher P. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J. Biol. Chem. 2001;276:6675–6688. [Abstract] [Google Scholar]
18. Uddin S., Majchrzak B., Woodson J., Arunkumar P., Alsayed Y., Pine R., Young P.R., Fish E.N., Platanias L.C. Activation of the p38 mitogen-activated protein kinase by type I interferons. J. Biol. Chem. 1999;274:30127–30131. [Abstract] [Google Scholar]
19. Dyson M.H., Thomson S., Inagaki M., Goto H., Arthur S.J., Nightingale K., Iborra F.J., Mahadevan L.C. MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J. Cell. Sci. 2005;118:2247–2259. [Abstract] [Google Scholar]
20. Kaur S., Sassano A., Dolniak B., Joshi S., Majchrzak-Kita B., Baker D.P., Hay N., Fish E.N., Platanias L.C. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl. Acad. Sci. U. S. A. 2008;105:4808–4813. [Europe PMC free article] [Abstract] [Google Scholar]
21. Rusinova I., Forster S., Yu S., Kannan A., Masse M., Cumming H., Chapman R., Hertzog P.J. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013;41:D1040–1046. [Europe PMC free article] [Abstract] [Google Scholar]
22. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424:99–103. [Abstract] [Google Scholar]
23. Yu Q., Konig R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J.M., Landau N.R. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 2004;11:435–442. [Abstract] [Google Scholar]
24. Neil S.J., Zang T., Bieniasz P.D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451:425–430. [Abstract] [Google Scholar]
25. Perez-Caballero D., Zang T., Ebrahimi A., McNatt M.W., Gregory D.A., Johnson M.C., Bieniasz P.D. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell. 2009;139:499–511. [Europe PMC free article] [Abstract] [Google Scholar]
26. Kolakofsky D., Kowalinski E., Cusack S. A structure-based model of RIG-I activation. RNA. 2012;18:2118–2127. [Europe PMC free article] [Abstract] [Google Scholar]
27. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005;6:981–988. [Abstract] [Google Scholar]
28. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004;5:730–737. [Abstract] [Google Scholar]
29. Oshiumi H., Miyashita M., Okamoto M., Morioka Y., Okabe M., Matsumoto M., Seya T. DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation. Cell Rep. 2015;11:1193–1207. [Abstract] [Google Scholar]
30. Miyashita M., Oshiumi H., Matsumoto M., Seya T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol. 2011;31:3802–3819. [Europe PMC free article] [Abstract] [Google Scholar]
31. Min J.Y., Li S., Sen G.C., Krug R.M. A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology. 2007;363:236–243. [Abstract] [Google Scholar]
32. Lemaire P.A., Anderson E., Lary J., Cole J.L. Mechanism of PKR activation by dsRNA. J. Mol. Biol. 2008;381:351–360. [Europe PMC free article] [Abstract] [Google Scholar]
33. Brass A.L., Huang I.C., Benita Y., John S.P., Krishnan M.N., Feeley E.M., Ryan B.J., Weyer J.L., van der Weyden L., Fikrig E., Adams D.J., Xavier R.J., Farzan M., Elledge S.J. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell. 2009;139:1243–1254. [Europe PMC free article] [Abstract] [Google Scholar]
34. Desai T.M., Marin M., Chin C.R., Savidis G., Brass A.L., Melikyan G.B. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog. 2014;10 [Europe PMC free article] [Abstract] [Google Scholar]
35. Huang I.C., Bailey C.C., Weyer J.L., Radoshitzky S.R., Becker M.M., Chiang J.J., Brass A.L., Ahmed A.A., Chi X., Dong L., Longobardi L.E., Boltz D., Kuhn J.H., Elledge S.J., Bavari S., Denison M.R., Choe H., Farzan M. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 2011;7 [Europe PMC free article] [Abstract] [Google Scholar]
36. Schmid S., Mordstein M., Kochs G., Garcia-Sastre A., Tenoever B.R. Transcription factor redundancy ensures induction of the antiviral state. J. Biol. Chem. 2010;285:42013–42022. [Europe PMC free article] [Abstract] [Google Scholar]
37. Pine R. Constitutive expression of an ISGF2/IRF1 transgene leads to interferon-independent activation of interferon-inducible genes and resistance to virus infection. J. Virol. 1992;66:4470–4478. [Europe PMC free article] [Abstract] [Google Scholar]
38. Zhao C., Hsiang T.Y., Kuo R.L., Krug R.M. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc. Natl. Acad. Sci. U. S. A. 2010;107:2253–2258. [Europe PMC free article] [Abstract] [Google Scholar]
39. Malakhova O.A., Yan M., Malakhov M.P., Yuan Y., Ritchie K.J., Kim K.I., Peterson L.F., Shuai K., Zhang D.E. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 2003;17:455–460. [Europe PMC free article] [Abstract] [Google Scholar]
40. Shi H.X., Yang K., Liu X., Liu X.Y., Wei B., Shan Y.F., Zhu L.H., Wang C. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol. 2010;30:2424–2436. [Europe PMC free article] [Abstract] [Google Scholar]
41. Espert L., Degols G., Gongora C., Blondel D., Williams B.R., Silverman R.H., Mechti N. ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J. Biol. Chem. 2003;278:16151–16158. [Abstract] [Google Scholar]
42. Zhou Z., Wang N., Woodson S.E., Dong Q., Wang J., Liang Y., Rjinbrand R., Wei L., Nichols J.E., Guo J.T., Holbrook M.R., Lemon S.M., Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology. 2011;409:175–188. [Europe PMC free article] [Abstract] [Google Scholar]
43. Kochs G., Reichelt M., Danino D., Hinshaw J.E., Haller O. Assay and functional analysis of dynamin-like Mx proteins. Methods Enzymol. 2005;404:632–643. [Abstract] [Google Scholar]
44. Nigg P.E., Pavlovic J. Oligomerization and GTP-binding requirements of MxA for viral target recognition and antiviral activity against influenza A virus. J. Biol. Chem. 2015;290:29893–29906. [Europe PMC free article] [Abstract] [Google Scholar]
45. Verhelst J., Parthoens E., Schepens B., Fiers W., Saelens X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 2012;86:13445–13455. [Europe PMC free article] [Abstract] [Google Scholar]
46. Rusch L., Zhou A., Silverman R.H. Caspase-dependent apoptosis by 2′,5′-oligoadenylate activation of RNase L is enhanced by IFN-beta. J. Interferon Cytokine Res. 2000;20:1091–1100. [Abstract] [Google Scholar]
47. Hovanessian A.G., Svab J., Marie I., Robert N., Chamaret S., Laurent A.G. Characterization of 69- and 100-kDa forms of 2-5A-synthetase from interferon-treated human cells. J. Biol. Chem. 1988;263:4945–4949. [Abstract] [Google Scholar]
48. Li G., Xiang Y., Sabapathy K., Silverman R.H. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J. Biol. Chem. 2004;279:1123–1131. [Abstract] [Google Scholar]
49. Zhu J., Zhang Y., Ghosh A., Cuevas R.A., Forero A., Dhar J., Ibsen M.S., Schmid-Burgk J.L., Schmidt T., Ganapathiraju M.K., Fujita T., Hartmann R., Barik S., Hornung V., Coyne C.B., Sarkar S.N. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity. 2014;40:936–948. [Europe PMC free article] [Abstract] [Google Scholar]
50. Wang X., Hinson E.R., Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe. 2007;2:96–105. [Abstract] [Google Scholar]
51. Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Segeral E., Yatim A., Emiliani S., Schwartz O., Benkirane M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474:654–657. [Europe PMC free article] [Abstract] [Google Scholar]
52. Lahouassa H., Daddacha W., Hofmann H., Ayinde D., Logue E.C., Dragin L., Bloch N., Maudet C., Bertrand M., Gramberg T., Pancino G., Priet S., Canard B., Laguette N., Benkirane M., Transy C., Landau N.R., Kim B., Margottin-Goguet F. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012;13:223–228. [Europe PMC free article] [Abstract] [Google Scholar]
53. Goldstone D.C., Ennis-Adeniran V., Hedden J.J., Groom H.C., Rice G.I., Christodoulou E., Walker P.A., Kelly G., Haire L.F., Yap M.W., de Carvalho L.P., Stoye J.P., Crow Y.J., Taylor I.A., Webb M. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480:379–382. [Abstract] [Google Scholar]
54. Ryoo J., Choi J., Oh C., Kim S., Seo M., Kim S.Y., Seo D., Kim J., White T.E., Brandariz-Nuñez A., Diaz-Griffero F., Yun C.H., Hollenbaugh J.A., Kim B., Baek D., Ahn K. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 2014;20:936–941. [Europe PMC free article] [Abstract] [Google Scholar]
55. Stremlau M., Perron M., Lee M., Li Y., Song B., Javanbakht H., Diaz-Griffero F., Anderson D.J., Sundquist W.I., Sodroski J. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc. Natl. Acad. Sci. U. S. A. 2006;103:5514–5519. [Europe PMC free article] [Abstract] [Google Scholar]
56. Gack M.U., Albrecht R.A., Urano T., Inn K.S., Huang I.C., Carnero E., Farzan M., Inoue S., Jung J.U., Garcia-Sastre A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009;5:439–449. [Europe PMC free article] [Abstract] [Google Scholar]
57. Hayakawa S., Shiratori S., Yamato H., Kameyama T., Kitatsuji C., Kashigi F., Goto S., Kameoka S., Fujikura D., Yamada T., Mizutani T., Kazumata M., Sato M., Tanaka J., Asaka M., Ohba Y., Miyazaki T., Imamura M., Takaoka A. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 2011;12:37–44. [Abstract] [Google Scholar]
58. Gao G., Guo X., Goff S.P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science. 2002;297:1703–1706. [Abstract] [Google Scholar]
59. Burke J.D., Platanias L.C., Fish E.N. Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against Coxsackie virus B3. J. Virol. 2014;88:3485–3495. [Europe PMC free article] [Abstract] [Google Scholar]
60. Essers M.A., Offner S., Blanco-Bose W.E., Waibler Z., Kalinke U., Duchosal M.A., Trumpp A. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–908. [Abstract] [Google Scholar]
61. Sato T., Onai N., Yoshihara H., Arai F., Suda T., Ohteki T. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat. Med. 2009;15:696–700. [Abstract] [Google Scholar]
62. Conrady C.D., Zheng M., Mandal N.A., van Rooijen N., Carr D.J. IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunol. 2013;6:45–55. [Europe PMC free article] [Abstract] [Google Scholar]
63. Fujita H., Asahina A., Tada Y., Fujiwara H., Tamaki K. Type I interferons inhibit maturation and activation of mouse Langerhans cells. J. Invest. Dermatol. 2005;125:126–133. [Abstract] [Google Scholar]
64. Kim M.O., Suh H.S., Brosnan C.F., Lee S.C. Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta. J. Neurochem. 2004;90:297–308. [Abstract] [Google Scholar]
65. Menten P., Proost P., Struyf S., Van Coillie E., Put W., Lenaerts J.P., Conings R., Jaspar J.M., De Groote D., Billiau A., Opdenakker G., Van Damme J. Differential induction of monocyte chemotactic protein-3 in mononuclear leukocytes and fibroblasts by interferon-alpha/beta and interferon-gamma reveals MCP-3 heterogeneity. Eur. J. Immunol. 1999;29:678–685. [Abstract] [Google Scholar]
66. Thomas K.E., Galligan C.L., Newman R.D., Fish E.N., Vogel S.N. Contribution of interferon-beta to the murine macrophage response to the toll-like receptor 4 agonist, lipopolysaccharide. J. Biol. Chem. 2006;281:31119–31130. [Abstract] [Google Scholar]
67. Antonelli A., Ferrari S.M., Fallahi P., Ghiri E., Crescioli C., Romagnani P., Vitti P., Serio M., Ferrannini E. Interferon-alpha, -beta and -gamma induce CXCL9 and CXCL10 secretion by human thyrocytes: modulation by peroxisome proliferator-activated receptor-gamma agonists. Cytokine. 2010;50:260–267. [Abstract] [Google Scholar]
68. Coelho L.F., Magno de Freitas Almeida G., Mennechet F.J., Blangy A., Uze G. Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression. Proc. Natl. Acad. Sci. U. S. A. 2005;102:11917–11922. [Europe PMC free article] [Abstract] [Google Scholar]
69. Shiow L.R., Rosen D.B., Brdickova N., Xu Y., An J., Lanier L.L., Cyster J.G., Matloubian M. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006;440:540–544. [Abstract] [Google Scholar]
70. Seo S.U., Kwon H.J., Ko H.J., Byun Y.H., Seong B.L., Uematsu S., Akira S., Kweon M.N. Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 2011;7 [Europe PMC free article] [Abstract] [Google Scholar]
71. Stock A.T., Smith J.M., Carbone F.R. Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection. J. Exp. Med. 2014;211:751–759. [Europe PMC free article] [Abstract] [Google Scholar]
72. Xin L., Vargas-Inchaustegui D.A., Raimer S.S., Kelly B.C., Hu J., Zhu L., Sun J., Soong L. Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J. Immunol. 2010;184:7047–7056. [Europe PMC free article] [Abstract] [Google Scholar]
73. Lee P.Y., Li Y., Kumagai Y., Xu Y., Weinstein J.S., Kellner E.S., Nacionales D.C., Butfiloski E.J., van Rooijen N., Akira S., Sobel E.S., Satoh M., Reeves W.H. Type I interferon modulates monocyte recruitment and maturation in chronic inflammation. Am. J. Pathol. 2009;175:2023–2033. [Europe PMC free article] [Abstract] [Google Scholar]
74. Murooka T.T., Rahbar R., Platanias L.C., Fish E.N. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood. 2008;111:4892–4901. [Europe PMC free article] [Abstract] [Google Scholar]
75. Colvin R.A., Campanella G.S., Sun J., Luster A.D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J. Biol. Chem. 2004;279:30219–30227. [Abstract] [Google Scholar]
76. Carr M.W., Roth S.J., Luther E., Rose S.S., Springer T.A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. U. S. A. 1994;91:3652–3656. [Europe PMC free article] [Abstract] [Google Scholar]
77. Zucchetto A., Tripodo C., Benedetti D., Deaglio S., Gaidano G., Del Poeta G., Gattei V. Monocytes/macrophages but not T lymphocytes are the major targets of the CCL3/CCL4 chemokines produced by CD38(+)CD49d(+) chronic lymphocytic leukaemia cells. Br. J. Haematol. 2010;150:111–113. [Abstract] [Google Scholar]
78. Sakamoto E., Hato F., Kato T., Sakamoto C., Akahori M., Hino M., Kitagawa S. Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2. J. Leukoc. Biol. 2005;78:301–309. [Abstract] [Google Scholar]
79. Hunter C.A., Gabriel K.E., Radzanowski T., Neyer L.E., Remington J.S. Type I interferons enhance production of IFN-gamma by NK cells. Immunol. Lett. 1997;59:1–5. [Abstract] [Google Scholar]
80. Nguyen K.B., Salazar-Mather T.P., Dalod M.Y., Van Deusen J.B., Wei X.Q., Liew F.Y., Caligiuri M.A., Durbin J.E., Biron C.A. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J. Immunol. 2002;169:4279–4287. [Abstract] [Google Scholar]
81. Lee C.K., Rao D.T., Gertner R., Gimeno R., Frey A.B., Levy D.E. Distinct requirements for IFNs and STAT1 in NK cell function. J. Immunol. 2000;165:3571–3577. [Abstract] [Google Scholar]
82. Martinez J., Huang X., Yang Y. Direct action of type I IFN on NK cells is required for their activation in response to vaccinia viral infection in vivo. J. Immunol. 2008;180:1592–1597. [Abstract] [Google Scholar]
83. Swann J.B., Hayakawa Y., Zerafa N., Sheehan K.C., Scott B., Schreiber R.D., Hertzog P., Smyth M.J. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 2007;178:7540–7549. [Abstract] [Google Scholar]
84. Kirou K.A., Vakkalanka R.K., Butler M.J., Crow M.K. Induction of Fas ligand-mediated apoptosis by interferon-alpha. Clin. Immunol. 2000;95:218–226. [Abstract] [Google Scholar]
85. Yanguez E., Garcia-Culebras A., Frau A., Llompart C., Knobeloch K.P., Gutierrez-Erlandsson S., Garcia-Sastre A., Esteban M., Nieto A., Guerra S. Correction: ISG15 regulates peritoneal macrophages functionality against viral infection. PLoS Pathog. 2016;12 [Europe PMC free article] [Abstract] [Google Scholar]
86. Pogue S.L., Preston B.T., Stalder J., Bebbington C.R., Cardarelli P.M. The receptor for type I IFNs is highly expressed on peripheral blood B cells and monocytes and mediates a distinct profile of differentiation and activation of these cells. J. Interferon Cytokine Res. 2004;24:131–139. [Abstract] [Google Scholar]
87. Dauer M., Schad K., Junkmann J., Bauer C., Herten J., Kiefl R., Schnurr M., Endres S., Eigler A. IFN-alpha promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4. J. Leukoc. Biol. 2006;80:278–286. [Abstract] [Google Scholar]
88. Luft T., Pang K.C., Thomas E., Hertzog P., Hart D.N., Trapani J., Cebon J. Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol. 1998;161:1947–1953. [Abstract] [Google Scholar]
89. Dauer M., Obermaier B., Herten J., Haerle C., Pohl K., Rothenfusser S., Schnurr M., Endres S., Eigler A. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J. Immunol. 2003;170:4069–4076. [Abstract] [Google Scholar]
90. Paquette R.L., Hsu N.C., Kiertscher S.M., Park A.N., Tran L., Roth M.D., Glaspy J.A. Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J. Leukoc. Biol. 1998;64:358–367. [Abstract] [Google Scholar]
91. Gautier G., Humbert M., Deauvieau F., Scuiller M., Hiscott J., Bates E.E., Trinchieri G., Caux C., Garrone P. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J. Exp. Med. 2005;201:1435–1446. [Europe PMC free article] [Abstract] [Google Scholar]
92. Simmons D.P., Wearsch P.A., Canaday D.H., Meyerson H.J., Liu Y.C., Wang Y., Boom W.H., Harding C.V. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J. Immunol. 2012;188:3116–3126. [Europe PMC free article] [Abstract] [Google Scholar]
93. Montoya M., Schiavoni G., Mattei F., Gresser I., Belardelli F., Borrow P., Tough D.F. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood. 2002;99:3263–3271. [Abstract] [Google Scholar]
94. Honda K., Yanai H., Negishi H., Asagiri M., Sato M., Mizutani T., Shimada N., Ohba Y., Takaoka A., Yoshida N., Taniguchi T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434:772–777. [Abstract] [Google Scholar]
95. Izaguirre A., Barnes B.J., Amrute S., Yeow W.S., Megjugorac N., Dai J., Feng D., Chung E., Pitha P.M., Fitzgerald-Bocarsly P. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol. 2003;74:1125–1138. [Abstract] [Google Scholar]
96. Huber J.P., Farrar J.D. Regulation of effector and memory T-cell functions by type I interferon. Immunology. 2011;132:466–474. [Abstract] [Google Scholar]
97. Curtsinger J.M., Valenzuela J.O., Agarwal P., Lins D., Mescher M.F. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol. 2005;174:4465–4469. [Abstract] [Google Scholar]
98. Kolumam G.A., Thomas S., Thompson L.J., Sprent J., Murali-Krishna K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 2005;202:637–650. [Europe PMC free article] [Abstract] [Google Scholar]
99. Aichele P., Unsoeld H., Koschella M., Schweier O., Kalinke U., Vucikuja S. CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. J. Immunol. 2006;176:4525–4529. [Abstract] [Google Scholar]
100. Thompson L.J., Kolumam G.A., Thomas S., Murali-Krishna K. Innate inflammatory signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T cells for clonal expansion and memory formation. J. Immunol. 2006;177:1746–1754. [Abstract] [Google Scholar]
101. Agarwal P., Raghavan A., Nandiwada S.L., Curtsinger J.M., Bohjanen P.R., Mueller D.L., Mescher M.F. Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J. Immunol. 2009;183:1695–1704. [Europe PMC free article] [Abstract] [Google Scholar]
102. Le Bon A., Thompson C., Kamphuis E., Durand V., Rossmann C., Kalinke U., Tough D.F. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J. Immunol. 2006;176:2074–2078. [Abstract] [Google Scholar]
103. Huber J.P., Ramos H.J., Gill M.A., Farrar J.D. Cutting edge: type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J. Immunol. 2010;185:813–817. [Europe PMC free article] [Abstract] [Google Scholar]
104. Moschen A.R., Geiger S., Krehan I., Kaser A., Tilg H. Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology. 2008;213:779–787. [Abstract] [Google Scholar]
105. Deonarain R., Verma A., Porter A.C., Gewert D.R., Platanias L.C., Fish E.N. Critical roles for IFN-beta in lymphoid development, myelopoiesis, and tumor development: links to tumor necrosis factor alpha. Proc. Natl. Acad. Sci. U. S. A. 2003;100:13453–13458. [Europe PMC free article] [Abstract] [Google Scholar]
106. Braun D., Caramalho I., Demengeot J. IFN-alpha/beta enhances BCR-dependent B cell responses. Int. Immunol. 2002;14:411–419. [Abstract] [Google Scholar]
107. Evans S.S., Collea R.P., Appenheimer M.M., Gollnick S.O. Interferon-alpha induces the expression of the L-selectin homing receptor in human B lymphoid cells. J. Cell Biol. 1993;123:1889–1898. [Europe PMC free article] [Abstract] [Google Scholar]
108. Hamilton J.A., Wu Q., Yang P., Luo B., Liu S., Hong H., Li J., Walter M.R., Fish E.N., Hsu H.C., Mountz J.D. Cutting edge: endogenous IFN-β regulates survival and development of transitional B cells. J. Immunol. 2017;199:2618–2623. [Europe PMC free article] [Abstract] [Google Scholar]
109. Yao Y., Richman L., Higgs B.W., Morehouse C.A., de los Reyes M., Brohawn P., Zhang J., White B., Coyle A.J., Kiener P.A., Jallal B. Neutralization of interferon-alpha/beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1785–1796. [Abstract] [Google Scholar]
110. Litinskiy M.B., Nardelli B., Hilbert D.M., He B., Schaffer A., Casali P., Cerutti A. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 2002;3:822–829. [Europe PMC free article] [Abstract] [Google Scholar]
111. Joo H., Coquery C., Xue Y., Gayet I., Dillon S.R., Punaro M., Zurawski G., Banchereau J., Pascual V., Oh S. Serum from patients with SLE instructs monocytes to promote IgG and IgA plasmablast differentiation. J. Exp. Med. 2012;209:1335–1348. [Europe PMC free article] [Abstract] [Google Scholar]
112. Castigli E., Wilson S.A., Scott S., Dedeoglu F., Xu S., Lam K.P., Bram R.J., Jabara H., Geha R.S. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 2005;201:35–39. [Europe PMC free article] [Abstract] [Google Scholar]
113. Castigli E., Scott S., Dedeoglu F., Bryce P., Jabara H., Bhan A.K., Mizoguchi E., Geha R.S. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 2004;101:3903–3908. [Europe PMC free article] [Abstract] [Google Scholar]
114. Jego G., Palucka A.K., Blanck J.P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity. 2003;19:225–234. [Abstract] [Google Scholar]
115. Fros J.J., Liu W.J., Prow N.A., Geertsema C., Ligtenberg M., Vanlandingham D.L., Schnettier E., Vlak J.M., Suhrbier A., Khromykh A.A., Pijlman G.P. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J. Virol. 2010;84:10877–10887. [Europe PMC free article] [Abstract] [Google Scholar]
116. Feng Q., Langereis M.A., Lork M., Nguyen M., Hato S.V., Lanke K., Emdad L., Bhoopathi P., Fisher P.B., Lloyd R.E., van Kuppeveld F.J. Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J. Virol. 2014;88:3369–3378. [Europe PMC free article] [Abstract] [Google Scholar]
117. Mukherjee A., Morosky S.A., Delorme-Axford E., Dybdahl-Sissoko N., Oberste M.S., Wang T., Coyne C.B. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog. 2011;7 [Europe PMC free article] [Abstract] [Google Scholar]
118. Munoz-Jordan J.L., Sanchez-Burgos G.G., Laurent-Rolle M., Garcia-Sastre A. Inhibition of interferon signaling by dengue virus. Proc. Natl. Acad. Sci. U. S. A. 2003;100:14333–14338. [Europe PMC free article] [Abstract] [Google Scholar]
119. Munoz-Jordan J.L., Laurent-Rolle M., Ashour J., Martinez-Sobrido L., Ashok M., Lipkin W.I., Garcia-Sastre A. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J. Virol. 2005;79:8004–8013. [Europe PMC free article] [Abstract] [Google Scholar]
120. Rodriguez-Madoz J.R., Belicha-Villanueva A., Bernal-Rubio D., Ashour J., Ayllon J., Fernandez-Sesma A. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J. Virol. 2010;84:9760–9774. [Europe PMC free article] [Abstract] [Google Scholar]
121. Mazzon M., Jones M., Davidson A., Chain B., Jacobs M. Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J. Infect. Dis. 2009;200:1261–1270. [Abstract] [Google Scholar]
122. Zhang A.P., Bornholdt Z.A., Liu T., Abelson D.M., Lee D.E., Li S., Woods V.L., Jr., Saphire E.O. The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold. PLoS Pathog. 2012;8 [Europe PMC free article] [Abstract] [Google Scholar]
123. Reid S.P., Leung L.W., Hartman A.L., Martinez O., Shaw M.L., Carbonnelle C., Volchkov V.E., Nichol S.T., Basler C.F. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J. Virol. 2006;80:5156–5167. [Europe PMC free article] [Abstract] [Google Scholar]
124. Basler C.F., Wang X., Muhlberger E., Volchkov V., Paragas J., Klenk H.D., Garcia-Sastre A., Palese P. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl. Acad. Sci. U. S. A. 2000;97:12289–12294. [Europe PMC free article] [Abstract] [Google Scholar]
125. Cardenas W.B., Loo Y.M., Gale M., Jr., Hartman A.L., Kimberlin C.R., Martinez-Sobrido L., Saphire E.O., Basler C.F. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 2006;80:5168–5178. [Europe PMC free article] [Abstract] [Google Scholar]
126. Bentz G.L., Liu R., Hahn A.M., Shackelford J., Pagano J.S. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-beta. Virology. 2010;402:121–128. [Europe PMC free article] [Abstract] [Google Scholar]
127. Hahn A.M., Huye L.E., Ning S., Webster-Cyriaque J., Pagano J.S. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J. Virol. 2005;79:10040–10052. [Europe PMC free article] [Abstract] [Google Scholar]
128. Wu L., Fossum E., Joo C.H., Inn K.S., Shin Y.C., Johannsen E., Hutt-Fletcher L.M., Hass J., Jung J.U. Epstein-Barr virus LF2: an antagonist to type I interferon. J. Virol. 2009;83:1140–1146. [Europe PMC free article] [Abstract] [Google Scholar]
129. Jiang J., Tang H. Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell. 2010;1:1106–1117. [Europe PMC free article] [Abstract] [Google Scholar]
130. Chen J., Wu M., Zhang X., Zhang W., Zhang Z., Chen L., He J., Zheng Y., Chen C., Wang F., Hu Y., Zhou X., Wang C., Xu Y., Lu M., Yuan Z. Hepatitis B virus polymerase impairs interferon-alpha-induced STAT activation through inhibition of importin-alpha5 and protein kinase C-delta. Hepatology. 2013;57:470–482. [Abstract] [Google Scholar]
131. Wang H., Ryu W.S. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion. PLoS Pathog. 2010;6 [Europe PMC free article] [Abstract] [Google Scholar]
132. Bode J.G., Ludwig S., Ehrhardt C., Albrecht U., Erhardt A., Schaper F., Heinrich P.C., Häussinger D. IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 2003;17:488–490. [Abstract] [Google Scholar]
133. Taylor D.R., Shi S.T., Romano P.R., Barber G.N., Lai M.M. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science. 1999;285:107–110. [Abstract] [Google Scholar]
134. Baril M., Racine M.E., Penin F., Lamarre D. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. J. Virol. 2009;83:1299–1311. [Europe PMC free article] [Abstract] [Google Scholar]
135. Li K., Foy E., Ferreon J.C., Nakamura M., Ferreon A.C., Ikeda M., Ray S.C., Gale M., Jr., Lemon S.M. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. U. S. A. 2005;102:2992–2997. [Europe PMC free article] [Abstract] [Google Scholar]
136. Kumthip K., Chusri P., Jilg N., Zhao L., Fusco D.N., Zhao H., Goto K., Cheng D., Schaefer E.A., Zhang L., Pantip C., Thongsawat S., O’Brien A., Peng L.F., Maneekarn N., Chung R.T., Lin W. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J. Virol. 2012;86:8581–8591. [Europe PMC free article] [Abstract] [Google Scholar]
137. Gale M., Jr, Blakely C.M., Kwieciszewski B., Tan S.L., Dossett M., Tang N.M., Tang N.M., Korth M.J., Polyak S.J., Gretch D.R., Katze M.G. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell. Biol. 1998;18:5208–5218. [Europe PMC free article] [Abstract] [Google Scholar]
138. Paulus C., Krauss S., Nevels M. A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc. Natl. Acad. Sci. U. S. A. 2006;103:3840–3845. [Europe PMC free article] [Abstract] [Google Scholar]
139. Huh Y.H., Kim Y.E., Kim E.T., Park J.J., Song M.J., Zhu H., Hayward G.S., Ahn J.H. Binding STAT2 by the acidic domain of human cytomegalovirus IE1 promotes viral growth and is negatively regulated by SUMO. J. Virol. 2008;82:10444–10454. [Europe PMC free article] [Abstract] [Google Scholar]
140. Taylor R.T., Bresnahan W.A. Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production. J. Virol. 2005;79:3873–3877. [Europe PMC free article] [Abstract] [Google Scholar]
141. Marshall E.E., Bierle C.J., Brune W., Geballe A.P. Essential role for either TRS1 or IRS1 in human cytomegalovirus replication. J. Virol. 2009;83:4112–4120. [Europe PMC free article] [Abstract] [Google Scholar]
142. Kim Y.J., Kim E.T., Kim Y.E., Lee M.K., Kwon K.M., Kim K.I., Stamminger T., Ahn J.H. Consecutive inhibition of ISG15 expression and ISGylation by cytomegalovirus regulators. PLoS Pathog. 2016;12 [Europe PMC free article] [Abstract] [Google Scholar]
143. Cai R., Carpick B., Chun R.F., Jeang K.T., Williams B.R. HIV-I TAT inhibits PKR activity by both RNA-dependent and RNA-independent mechanisms. Arch. Biochem. Biophys. 2000;373:361–367. [Abstract] [Google Scholar]
144. Stopak K., de Noronha C., Yonemoto W., Greene W.C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell. 2003;12:591–601. [Abstract] [Google Scholar]
145. Bartlett E.J., Cruz A.M., Esker J., Castano A., Schomacker H., Surman S.R., Hennessey M., Boonyaratanakornkit J., Pickles R.J., Collins P.L., Murphy B.R., Schmidt A.C. Human parainfluenza virus type 1 C proteins are nonessential proteins that inhibit the host interferon and apoptotic responses and are required for efficient replication in nonhuman primates. J. Virol. 2008;82:8965–8977. [Europe PMC free article] [Abstract] [Google Scholar]
146. Schaap-Nutt A., D’Angelo C., Scull M.A., Amaro-Carambot E., Nishio M., Pickles R.J., Collins P.L., Murphy B.R., Schmidt A.C. Human parainfluenza virus type 2 V protein inhibits interferon production and signaling and is required for replication in non-human primates. Virology. 2010;397:285–298. [Europe PMC free article] [Abstract] [Google Scholar]
147. Nees M., Geoghegan J.M., Hyman T., Frank S., Miller L., Woodworth C.D. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J. Virol. 2001;75:4283–4296. [Europe PMC free article] [Abstract] [Google Scholar]
148. Ronco L.V., Karpova A.Y., Vidal M., Howley P.M. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 1998;12:2061–2072. [Europe PMC free article] [Abstract] [Google Scholar]
149. Spann K.M., Tran K.C., Collins P.L. Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines. J. Virol. 2005;79:5353–5362. [Europe PMC free article] [Abstract] [Google Scholar]
150. Kotla S., Peng T., Bumgarner R.E., Gustin K.E. Attenuation of the type I interferon response in cells infected with human rhinovirus. Virology. 2008;374:399–410. [Abstract] [Google Scholar]
151. Paladino P., Collins S.E., Mossman K.L. Cellular localization of the herpes simplex virus ICP0 protein dictates its ability to block IRF3-mediated innate immune responses. PLoS One. 2010;5 [Europe PMC free article] [Abstract] [Google Scholar]
152. Johnson K.E., Song B., Knipe D.M. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology. 2008;374:487–494. [Europe PMC free article] [Abstract] [Google Scholar]
153. He B., Gross M., Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. U. S. A. 1997;94:843–848. [Europe PMC free article] [Abstract] [Google Scholar]
154. Sanchez R., Mohr I. Inhibition of cellular 2′-5′ oligoadenylate synthetase by the herpes simplex virus type 1 Us11 protein. J. Virol. 2007;81:3455–3464. [Europe PMC free article] [Abstract] [Google Scholar]
155. Jia D., Rahbar R., Chan R.W., Lee S.M., Chan M.C., Wang B.X., Baker D.P., Sun B., Peiris J.S., Nicholls J.M., Fish E.N. Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One. 2010;5 [Europe PMC free article] [Abstract] [Google Scholar]
156. Mibayashi M., Martinez-Sobrido L., Loo Y.M., Cardenas W.B., Gale M., Jr., Garcia-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 2007;81:514–524. [Europe PMC free article] [Abstract] [Google Scholar]
157. Twu K.Y., Noah D.L., Rao P., Kuo R.L., Krug R.M. The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J. Virol. 2006;80:3957–3965. [Europe PMC free article] [Abstract] [Google Scholar]
158. Bergmann M., Garcia-Sastre A., Carnero E., Pehamberger H., Wolff K., Palese P., Muster T. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol. 2000;74:6203–6206. [Europe PMC free article] [Abstract] [Google Scholar]
159. Chen Z., Li Y., Krug R.M. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J. 1999;18:2273–2283. [Europe PMC free article] [Abstract] [Google Scholar]
160. Min J.Y., Krug R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. U. S. A. 2006;103:7100–7105. [Europe PMC free article] [Abstract] [Google Scholar]
161. Dauber B., Schneider J., Wolff T. Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonize production of alpha/beta interferon. J. Virol. 2006;80:11667–11677. [Europe PMC free article] [Abstract] [Google Scholar]
162. Lin C.W., Cheng C.W., Yang T.C., Li S.W., Cheng M.H., Wan L., Lin Y.J., Lai C.H., Lin W.Y., Kao M.C. Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. Virus Res. 2008;137:49–55. [Abstract] [Google Scholar]
163. Lin R.J., Chang B.L., Yu H.P., Liao C.L., Lin Y.L. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J. Virol. 2006;80:5908–5918. [Europe PMC free article] [Abstract] [Google Scholar]
164. Yang T.C., Li S.W., Lai C.C., Lu K.Z., Chiu M.T., Hsieh T.H., Wan L., Lin C.W. Proteomic analysis for Type I interferon antagonism of Japanese encephalitis virus NS5 protein. Proteomics. 2013;13:3442–3456. [Europe PMC free article] [Abstract] [Google Scholar]
165. Hastie K.M., Kimberlin C.R., Zandonatti M.A., MacRae I.J., Saphire E.O. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc. Natl. Acad. Sci. U. S. A. 2011;108:2396–2401. [Europe PMC free article] [Abstract] [Google Scholar]
166. Martinez-Sobrido L., Giannakas P., Cubitt B., Garcia-Sastre A., de la Torre J.C. Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J. Virol. 2007;81:12696–12703. [Europe PMC free article] [Abstract] [Google Scholar]
167. Zhou S., Cerny A.M., Zacharia A., Fitzgerald K.A., Kurt-Jones E.A., Finberg R.W. Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J. Virol. 2010;84:9452–9462. [Europe PMC free article] [Abstract] [Google Scholar]
168. Kash J.C., Muhlberger E., Carter V., Grosch M., Perwitasari O., Proll S.C., Thomas M.J., Weber F., Klenk H.D., Katze M.G. Global suppression of the host antiviral response by Ebola- and Marburgviruses: increased antagonism of the type I interferon response is associated with enhanced virulence. J. Virol. 2006;80:3009–3020. [Europe PMC free article] [Abstract] [Google Scholar]
169. Ramanan P., Edwards M.R., Shabman R.S., Leung D.W., Endlich-Frazier A.C., Borek D.M., Otwinowski Z., Borek D.M., Liu G., Huh J., Basler C.F., Amarasinghe G.K. Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proc. Natl. Acad. Sci. U. S. A. 2012;109:20661–20666. [Europe PMC free article] [Abstract] [Google Scholar]
170. Valmas C., Basler C.F. Marburg virus VP40 antagonizes interferon signaling in a species-specific manner. J. Virol. 2011;85:4309–4317. [Europe PMC free article] [Abstract] [Google Scholar]
171. Takayama I., Sato H., Watanabe A., Omi-Furutani M., Sugai A., Kanki K., Yoneda M., Kai C. The nucleocapsid protein of measles virus blocks host interferon response. Virology. 2012;424:45–55. [Abstract] [Google Scholar]
172. Ramachandran A., Parisien J.P., Horvath C.M. STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J. Virol. 2008;82:8330–8338. [Europe PMC free article] [Abstract] [Google Scholar]
173. Yang Y., Zhang L., Geng H., Deng Y., Huang B., Guo Y., Zhao Z., Tan W. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013;4:951–961. [Europe PMC free article] [Abstract] [Google Scholar]
174. Niemeyer D., Zillinger T., Muth D., Zielecki F., Horvath G., Suliman T., Barchet W., Weber F., Dorsten C., Müller M.A. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J. Virol. 2013;87:12489–12495. [Europe PMC free article] [Abstract] [Google Scholar]
175. Kubota T., Yokosawa N., Yokota S., Fujii N., Tashiro M., Kato A. Mumps virus V protein antagonizes interferon without the complete degradation of STAT1. J. Virol. 2005;79:4451–4459. [Europe PMC free article] [Abstract] [Google Scholar]
176. Shaw M.L., Garcia-Sastre A., Palese P., Basler C.F. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J. Virol. 2004;78:5633–5641. [Europe PMC free article] [Abstract] [Google Scholar]
177. Brzozka K., Finke S., Conzelmann K.K. Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J. Virol. 2006;80:2675–2683. [Europe PMC free article] [Abstract] [Google Scholar]
178. Brzozka K., Finke S., Conzelmann K.K. Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J. Virol. 2005;79:7673–7681. [Europe PMC free article] [Abstract] [Google Scholar]
179. Lieu K.G., Brice A., Wiltzer L., Hirst B., Jans D.A., Blondel D., Moseley G.W. The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling. J. Virol. 2013;87:8261–8265. [Europe PMC free article] [Abstract] [Google Scholar]
180. Barro M., Patton J.T. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J. Virol. 2007;81:4473–4481. [Europe PMC free article] [Abstract] [Google Scholar]
181. Graff J.W., Ettayebi K., Hardy M.E. Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog. 2009;5 [Europe PMC free article] [Abstract] [Google Scholar]
182. Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P., Jin D.Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell. Mol. Immunol. 2014;11:141–149. [Europe PMC free article] [Abstract] [Google Scholar]
183. Siu K.L., Kok K.H., Ng M.H., Poon V.K., Yuen K.Y., Zheng B.J., Jin D.Y. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J. Biol. Chem. 2009;284:16202–16209. [Europe PMC free article] [Abstract] [Google Scholar]
184. Kamitani W., Narayanan K., Huang C., Lokugamage K., Ikegami T., Ito N., Kubo H., Makino S. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. U. S. A. 2006;103:12885–12890. [Europe PMC free article] [Abstract] [Google Scholar]
185. Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C.T., Makino S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol. 2008;82:4471–4479. [Europe PMC free article] [Abstract] [Google Scholar]
186. Wathelet M.G., Orr M., Frieman M.B., Baric R.S. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 2007;81:11620–11633. [Europe PMC free article] [Abstract] [Google Scholar]
187. Devaraj S.G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C.J., Tseng C.T., Baker S.C., Li K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 2007;282:32208–32221. [Europe PMC free article] [Abstract] [Google Scholar]
188. Frieman M., Yount B., Heise M., Kopecky-Bromberg S.A., Palese P., Baric R.S. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol. 2007;81:9812–9824. [Europe PMC free article] [Abstract] [Google Scholar]
189. Xiang Y., Condit R.C., Vijaysri S., Jacobs B., Williams B.R., Silverman R.H. Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus. J. Virol. 2002;76:5251–5259. [Europe PMC free article] [Abstract] [Google Scholar]
190. Davies M.V., Chang H.W., Jacobs B.L., Kaufman R.J. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 1993;67:1688–1692. [Europe PMC free article] [Abstract] [Google Scholar]
191. Alcami A., Symons J.A., Smith G.L. The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J. Virol. 2000;74:11230–11239. [Europe PMC free article] [Abstract] [Google Scholar]
192. Laurent-Rolle M., Boer E.F., Lubick K.J., Wolfinbarger J.B., Carmody A.B., Rockx B., Liu W., Ashour J., Shupert W.L., Holbrook M.R., Barrett A.D., Mason P.W., Bloom M.E., Garcia-Sastre A., Khromykh A.A., Best S.M. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J. Virol. 2010;84:3503–3515. [Europe PMC free article] [Abstract] [Google Scholar]
193. Guo J.T., Hayashi J., Seeger C. West Nile virus inhibits the signal transduction pathway of alpha interferon. J. Virol. 2005;79:1343–1350. [Europe PMC free article] [Abstract] [Google Scholar]
194. Laurent-Rolle M., Morrison J., Rajsbaum R., Macleod J.M., Pisanelli G., Pham A., Miorin J.Ayllon L., tenOever B.R., Garcia-Sastre A. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe. 2014;16:314–327. [Europe PMC free article] [Abstract] [Google Scholar]
195. Kumar A., Hou S., Airo A.M., Limonta D., Mancinelli V., Branton W., Power C., Hobman T.C. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep. 2016;17:1766–1775. [Europe PMC free article] [Abstract] [Google Scholar]
196. World Heath Organization. https://www.who.int, 2019 (accessed July 31, 2019).
197. Negro F. Adverse effects of drugs in the treatment of viral hepatitis. Best Pract. Res. Clin. Gastroenterol. 2010;24:183–192. [Abstract] [Google Scholar]
198. Dhillon S., Kaker A., Dosanjh A., Japra D., Vanthiel D.H. Irreversible pulmonary hypertension associated with the use of interferon alpha for chronic hepatitis C. Dig. Dis. Sci. 2010;55:1785–1790. [Europe PMC free article] [Abstract] [Google Scholar]
199. Kim S.R., Imoto S., Mita K., Taniguchi M., Sasase N., Muramatsu A., Kudo M., Kitai S., El-Shamy A., Hotta H., Hayashi Y. Pegylated interferon plus ribavirin combination therapy for chronic hepatitis C with high viral load of serum hepatitis C virus RNA, genotype 1b, discontinued on attaining sustained virological response at week 16 after onset of acute pancreatitis. Digestion. 2009;79:36–39. [Abstract] [Google Scholar]
200. Yamazaki M., Sato A., Takeda T., Komatsu M. Distinct clinical courses in type 1 diabetes mellitus induced by peg-interferon-alpha treatment for chronic hepatitis C. Int. Med. 2010;49:403–407. [Abstract] [Google Scholar]
201. Formann E., Jessner W., Bennett L., Ferenci P. Twice-weekly administration of peginterferon-alpha-2b improves viral kinetics in patients with chronic hepatitis C genotype 1. J. Viral Hepat. 2003;10:271–276. [Abstract] [Google Scholar]
202. Mangia A., Santoro R., Minerva N., Ricci G.L., Carretta V., Persico M., Vinelli F., Scotto G., Bacca D., Annese M., Romano M., Zechini F., Sogari F., Spirito F., Andriulli A. Peginterferon alfa-2b and ribavirin for 12 vs. 24 weeks in HCV genotype 2 or 3. N. Engl. J. Med. 2005;352:2609–2617. [Abstract] [Google Scholar]
203. Shiffman M.L., Suter F., Bacon B.R., Nelson D., Harley H., Sola R., Shafran S.D., Barange K., Lin A., Soman A., Zeuzem S. ACCELERATE Investigators, Peginterferon alfa-2a and ribavirin for 16 or 24 weeks in HCV genotype 2 or 3. N. Engl. J. Med. 2007;357:124–134. [Abstract] [Google Scholar]
204. Yu M.L., Dai C.Y., Huang J.F., Hou N.J., Lee L.P., Hsieh M.Y., Chiu C.F., Lin Z.Y., Chen S.C., Wang L.Y., Chang W.Y., Chuang W.L. A randomised study of peginterferon and ribavirin for 16 versus 24 weeks in patients with genotype 2 chronic hepatitis C. Gut. 2007;56:553–559. [Europe PMC free article] [Abstract] [Google Scholar]
205. Dalgard O., Bjoro K., Ring-Larsen H., Bjornsson E., Holberg-Petersen M., Skovlund E., Reichard O., Myrvang B., Sundelof B., Ritland S., Hellum K., Frydén A., Florholmen J., Verbaan H. North-C Group, Pegylated interferon alfa and ribavirin for 14 versus 24 weeks in patients with hepatitis C virus genotype 2 or 3 and rapid virological response. Hepatology. 2008;47:35–42. [Abstract] [Google Scholar]
206. Varghese R., Al-Khaldi J., Asker H., Fadili A.A., Al Ali J., Hassan F.A. Treatment of chronic hepatitis C genotype 4 with peginterferon alpha-2a plus ribavirin. Hepatogastroenterology. 2009;56:218–222. [Abstract] [Google Scholar]
207. Manns M.P., McHutchison J.G., Gordon S.C., Rustgi V.K., Shiffman M., Reindollar R., Goodman Z.D., Koury K., Ling M., Albrecht J.K. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958–965. [Abstract] [Google Scholar]
208. Fried M.W., Shiffman M.L., Reddy K.R., Smith C., Marinos G., Goncales F.L., Jr., Haussinger D., Diago M., Carosi G., Dhumeaux D., Craxi A., Lin A., Hoffman J., Yu J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 2002;347:975–982. [Abstract] [Google Scholar]
209. Hadziyannis S.J., Sette H., Jr., Morgan T.R., Balan V., Diago M., Marcellin P., Ramadori G., Bodenheimer H., Jr., Bernstein D., Rizzetto M., Zeuzem S., Pockros P.J., Lin A., Ackrill A.M. PEGASYS International Study Group, Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann. Intern. Med. 2004;140:346–355. [Abstract] [Google Scholar]
210. Legrand-Abravanel F., Colson P., Leguillou-Guillemette H., Alric L., Ravaux I., Lunel-Fabiani F., Bouviers-Alias M., Trimoulet P., Chaix M.L., Hezode C., Foucher J., Fontaine H., Roque-Afonso A.M., Gassin M., Schvoerer E., Gaudy C., Roche B., Doffoël M., D’Alteroche L., Vallet S., Baazia Y., Pozzetto B., Thibault V., Nousbaum J.B., Roulot D., Coppere H., Poynard T., Payan C., Izopet J. Influence of the HCV subtype on the virological response to pegylated interferon and ribavirin therapy. J. Med. Virol. 2009;81:2029–2035. [Abstract] [Google Scholar]
211. Inoue Y., Hiramatsu N., Oze T., Yakushijin T., Mochizuki K., Hagiwara H., Oshita M., Mita E., Fukui H., Inada M., Tamura S., Yoshihara H., Hayashi E., Inoue A., Imai Y., Kato M., Miyagi T., Hohsui A., Ishida H., Kiso S., Kanto T., Kasahara A., Takehara T., Hayashi N. Factors affecting efficacy in patients with genotype 2 chronic hepatitis C treated by pegylated interferon alpha-2b and ribavirin: reducing drug doses has no impact on rapid and sustained virological responses. J. Viral Hepat. 2010;17:336–344. [Abstract] [Google Scholar]
212. Poordad F., Reddy K.R., Martin P. Rapid virologic response: a new milestone in the management of chronic hepatitis C. Clin. Infect. Dis. 2008;46:78–84. [Abstract] [Google Scholar]
213. Federico A., Masarone M., Romano M., Dallio M., Rosato V., Persico M. Rapid virological response represents the highest prediction factor of response to antiviral treatment in HCV-related chronic hepatitis: a multicenter retrospective study. Hepat. Mon. 2015;15 [Europe PMC free article] [Abstract] [Google Scholar]
214. Kim K.A., Lin W., Tai A.W., Shao R.X., Weinberg E., De Sa Borges C.B., Bhan A.K., Zheng H., Kamegaya Y., Chung R.T. Hepatic SOCS3 expression is strongly associated with non-response to therapy and race in HCV and HCV/HIV infection. J. Hepatol. 2009;50:705–711. [Europe PMC free article] [Abstract] [Google Scholar]
215. Persico M., Capasso M., Russo R., Persico E., Croce L., Tiribelli C., Iolascon A. Elevated expression and polymorphisms of SOCS3 influence patient response to antiviral therapy in chronic hepatitis C. Gut. 2008;57:507–515. [Abstract] [Google Scholar]
216. Hijikata M., Ohta Y., Mishiro S. Identification of a single nucleotide polymorphism in the MxA gene promoter (G/T at nt –88) correlated with the response of hepatitis C patients to interferon. Intervirology. 2000;43:124–127. [Abstract] [Google Scholar]
217. Matsuyama N., Mishiro S., Sugimoto M., Furuichi Y., Hashimoto M., Hijikata M., Ohta Y. The dinucleotide microsatellite polymorphism of the IFNAR1 gene promoter correlates with responsiveness of hepatitis C patients to interferon. Hepatol. Res. 2003;25:221–225. [Abstract] [Google Scholar]
218. Pang P.S., Planet P.J., Glenn J.S. The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy. PLoS One. 2009;4:e6579. [Europe PMC free article] [Abstract] [Google Scholar]
219. Brunetto M.R., Moriconi F., Bonino F., Lau G.K., Farci P., Yurdaydin C., Piratvisuth T., Luo K., Wang Y., Hadziyannis S., Wolf E., McCloud P., Batria R., Marcellin P. Hepatitis B virus surface antigen levels: a guide to sustained response to peginterferon alfa-2a in HBeAg-negative chronic hepatitis B. Hepatology. 2009;49:1141–1150. [Abstract] [Google Scholar]
220. Caruntu F.A., Streinu-Cercel A., Gheorghe L.S., Grigorescu M., Sporea I., Stanciu C., Andronescu D., Voinea F., Diculescu M., Oproiu A., Voiosu R. Efficacy and safety of peginterferon alpha-2a (40KD) in HBeAg-positive chronic hepatitis B patients. J. Gastrointestin. Liver Dis. 2009;18:425–431. [Abstract] [Google Scholar]
221. Keating G.M. Peginterferon-alpha-2a (40 kD): a review of its use in chronic hepatitis B. Drugs. 2009;69:2633–2660. [Abstract] [Google Scholar]
222. Alric L., Bonnet D., Laurent G., Kamar N., Izopet J. Chronic hepatitis E virus infection: successful virologic response to pegylated interferon-alpha therapy. Ann. Intern. Med. 2010;153:135–136. [Abstract] [Google Scholar]
223. Kamar N., Abravanel F., Garrouste C., Cardeau-Desangles I., Mansuy J.M., Weclawiak H., Izopet J., Rostaing L. Three-month pegylated interferon-alpha-2a therapy for chronic hepatitis E virus infection in a haemodialysis patient. Nephrol. Dial. Transplant. 2010;25:2792–2795. [Abstract] [Google Scholar]
224. van de Garde M.D.B., Pas S.D., van Oord G.W., Gama L., Choi Y., de Man R.A., Boonstra A., Vanwolleghem T. Interferon-alpha treatment rapidly clears Hepatitis E virus infection in humanized mice. Sci. Rep. 2017;7:8267. [Europe PMC free article] [Abstract] [Google Scholar]
225. Haagmans B.L., Kuiken T., Martina B.E., Fouchier R.A., Rimmelzwaan G.F., van Amerongen G., van Riel D., de Jong T., Itamura S., Chan K.H., Tashiro M., Osterhaus A.D. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 2004;10:290–293. [Europe PMC free article] [Abstract] [Google Scholar]
226. Blatt L.M., Davis J.M., Klein S.B., Taylor M.W. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J. Interferon Cytokine Res. 1996;16:489–499. [Abstract] [Google Scholar]
227. Klein S.B., Blatt L.M., Taylor M.W. Cell surface binding characteristics correlate with consensus type I interferon enhanced activity. J. Interferon Cytokine Res. 1996;16:1–6. [Abstract] [Google Scholar]
228. Melian E.B., Plosker G.L. IFN alfacon-1: a review of pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C. Drugs. 2001;61:1661–1691. [Abstract] [Google Scholar]
229. Loutfy M.R., Blatt L.M., Siminovitch K.A., Ward S., Wolff B., Lho H., Pham D.H., Deif H., LaMere E.A., Chang M., Kain K.C., Farcas G.A., Ferguson P., Latchford M., Levy G., Dennis J.W., Lai E.K., Fish E.N. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003;290:3222–3228. [Abstract] [Google Scholar]
230. Kumaki Y., Day C.W., Wandersee M.K., Schow B.P., Madsen J.S., Grant D., Roth J.P., Smee D.F., Blatt L.M., Barnard D.L. Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu-3 cells. Biochem. Biophys. Res. Commun. 2008;371:110–113. [Europe PMC free article] [Abstract] [Google Scholar]
231. Kumaki Y., Day C.W., Bailey K.W., Wandersee M.K., Wong M.H., Madsen J.R., Madsen J.S., Nelson N.M., Hoopes J.D., Woolcott J.D., McLean T.Z., Blatt L.M., Salazar A.M., Smee D.F., Barnard D.L. Induction of interferon-gamma-inducible protein 10 by SARS-CoV infection, interferon alfacon 1 and interferon inducer in human bronchial epithelial Calu-3 cells and BALB/c mice. Antivir. Agents Chemother. 2010;20:169–177. [Abstract] [Google Scholar]
232. Smith L.M., Hensley L.E., Geisbert T.W., Johnson J., Stossel A., Honko A., Yen J.Y., Geisbert J., Paragas J., Fritz E., Olinger G., Young H.A., Rubins K.H., Karp C.L. Interferon β therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever. J. Infect. Dis. 2013;208:310–318. [Europe PMC free article] [Abstract] [Google Scholar]
233. Jahrling P.B., Geisbert T.W., Geisbert J.B., Swearengen J.R., Bray M., Jaax N.K., Huggins J.W., LeDuc J.W., Peters C.J. Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental Ebola virus infections. J. Infect. Dis. 1999;179:S224–234. [Abstract] [Google Scholar]
234. Qiu X., Wong G., Fernando L., Aubet J., Bello A., Strong J., Alimonti J.B., Kobinger G.P. mABs and Ad-vectored IFN-α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci. Transl. Med. 2013;5:207ra. 143. [Abstract] [Google Scholar]
235. McCarthy S.D.S., Majchrzak-Kita B., Racine T., Kozlowski H.N., Baker D.P., Hoenen T., Kobinger G.P., Fish E.N., Branch D.R. A rapid screening assay identifies monotherapy with interferon-β and combination therapies with nucleoside analogs as effective inhibitors of Ebola virus. PLoS Negl. Trop. Dis. 2016;10 [Europe PMC free article] [Abstract] [Google Scholar]
236. Konde M.K., Baker D.P., Traore F.A., Sow M.S., Camara A., Barry A.A., Mara D., Barry A., Cone M., Kaba I., Richard A.A., Beavogui A.H., Günther S., European Mobile Laboratory Consortium, Pintilie M., Fish E.N. Interferon β-1a for the treatment of Ebola virus disease: a historically controlled, single-arm proof-of-concept trial. PLoS One. 2017;12 [Europe PMC free article] [Abstract] [Google Scholar]
237. Wang B.X.Wang B.X., Wei L., Kotra L.P., Brown E.G., Fish E.N. A conserved residue, tyrosine (Y) 84, in H5N1 influenza A virus NS1 regulates IFN signaling responses to enhance viral infection. Viruses. 2017;9:E107. [Europe PMC free article] [Abstract] [Google Scholar]
238. Slonchak A., Clarke B., Mackenzie J., Amarilla A.A., Setoh Y.X., Khromykh A.A. West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles. BMC Genomics. 2019;20:474. [Europe PMC free article] [Abstract] [Google Scholar]
239. Konishi H., Okamoto K., Ohmori Y., Yoshino H., Ohmori H., Ashihara M., Hirata Y., Ohta A., Sakamoto H., Hada N., Katsume A., Kohara M., Morikawa K., Tsukuda T., Shimma N., Foster G.R., Alazawi W., Aoki Y., Arisawa M., Sudoh M. An orally available, small-molecule interferon inhibits viral replication. Sci. Rep. 2012;2:259. [Europe PMC free article] [Abstract] [Google Scholar]
240. Furutani Y., Toguchi M., Shiozaki-Sato Y., Qin X.Y., Ebisui E., Higuchi S., Sudoh M., Suzuki H., Takahashi N., Watashi K., Wakita T., Kakeya H., Kojima S. An interferon-like small chemical compound CDM-3008 suppresses hepatitis B virus through induction of interferon-stimulated genes. PLoS One. 2019;14 [Europe PMC free article] [Abstract] [Google Scholar]
241. Sun J., Ennis J., Turner J.D., Chu J.J. Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge. Antiviral Res. 2016;134:207–215. [Europe PMC free article] [Abstract] [Google Scholar]
242. Richardson J.S., Wong G., Pillet S., Schindle S., Ennis J., Turner J., Strong J.E., Kobinger G.P. Evaluation of different strategies for post-exposure treatment of Ebola virus infection in rodents. J. Bioterror. Biodef. 2011;S1:007. [Europe PMC free article] [Abstract] [Google Scholar]
243. Dagley A., Ennis J., Turner J.D., Rood K.A., Van Wettere A.J., Gowen B.B., Julander J.G. Protection against Chikungunya virus induced arthralgia following prophylactic treatment with adenovirus vectored interferon (mDEF201) Antiviral Res. 2014;108:1–9. [Europe PMC free article] [Abstract] [Google Scholar]
244. Gowen B.B., Ennis J., Bailey K.W., Vest Z., Scharton D., Sefing E.J., Turner J.D. Single-dose intranasal treatment with DEF201 (adenovirus vectored consensus interferon) prevents lethal disease due to Rift Valley fever virus challenge. Viruses. 2014;6:1410–1423. [Europe PMC free article] [Abstract] [Google Scholar]
245. Baek Y.H., Song M.S., Lee E.-Y., Kim Y.I., Kim E.H., Park S.J., Park K.J., Kwon H.I., Pascua P.N., Lim G.J., Kim S., Yoon S.W., Kim M.H., Webby R.J., Choi Y.K. Profiling and characterization of influenza N1 strains potentially resistant to multiple neuraminidase inhibitors. J. Virol. 2015;89:287–299. [Europe PMC free article] [Abstract] [Google Scholar]

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/71374280
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/71374280

Article citations


Go to all (73) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.