Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


SRY-related cDNA encoding a protein with a high-mobility-group (HMG) box and a leucine zipper motif, which was designated SOX-LZ, was isolated from a rainbow trout testis cDNA library. Comparison of this cDNA with the mouse homologous cDNA isolated from a testis cDNA library exhibits an overall amino acid sequence identity of 77%, which is in striking contrast to the abrupt loss of amino acid sequence homology outside the HMG box found among mammalian SRY genes. In both rainbow trout and mice, Northern (RNA) blot analyses have revealed the presence of a testis-specific 3-kb-long SOX-LZ mRNA, and this transcript appeared coincidentally with the protamine mRNA, suggesting its expression in the germ line. A recombinant HMG box region protein encoded by SOX-LZ could bind strongly with an oligonucleotide containing an AACAAT sequence, which is also recognized by mouse Sry and Sox-5. Upon cotransfection into CHO cells, SOX-LZ transactivated transcription through its binding motif when the region including the leucine zipper motif was deleted [SOX-LZ (D105-356)]; however, the intact SOX-LZ failed to transactivate. The intact SOX-LZ could form homodimers through the leucine zipper, which resulted in inhibition of DNA binding by the HMG box, while SOX-LZ (D105-356), which was incapable of dimerization, showed specific binding with the AACAAT sequence. Thus, the repressed transactivation of the intact SOX-LZ in CHO cells was primarily attributable to the low level of DNA binding of SOX-LZ homodimers.

Free full text 


Logo of molcellbLink to Publisher's site
Mol Cell Biol. 1995 Jul; 15(7): 3759–3766.
PMCID: PMC230614
PMID: 7791783

A gene that is related to SRY and is expressed in the testes encodes a leucine zipper-containing protein.

Abstract

SRY-related cDNA encoding a protein with a high-mobility-group (HMG) box and a leucine zipper motif, which was designated SOX-LZ, was isolated from a rainbow trout testis cDNA library. Comparison of this cDNA with the mouse homologous cDNA isolated from a testis cDNA library exhibits an overall amino acid sequence identity of 77%, which is in striking contrast to the abrupt loss of amino acid sequence homology outside the HMG box found among mammalian SRY genes. In both rainbow trout and mice, Northern (RNA) blot analyses have revealed the presence of a testis-specific 3-kb-long SOX-LZ mRNA, and this transcript appeared coincidentally with the protamine mRNA, suggesting its expression in the germ line. A recombinant HMG box region protein encoded by SOX-LZ could bind strongly with an oligonucleotide containing an AACAAT sequence, which is also recognized by mouse Sry and Sox-5. Upon cotransfection into CHO cells, SOX-LZ transactivated transcription through its binding motif when the region including the leucine zipper motif was deleted [SOX-LZ (D105-356)]; however, the intact SOX-LZ failed to transactivate. The intact SOX-LZ could form homodimers through the leucine zipper, which resulted in inhibition of DNA binding by the HMG box, while SOX-LZ (D105-356), which was incapable of dimerization, showed specific binding with the AACAAT sequence. Thus, the repressed transactivation of the intact SOX-LZ in CHO cells was primarily attributable to the low level of DNA binding of SOX-LZ homodimers.

Full Text

The Full Text of this article is available as a PDF (483K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alonso S, Minty A, Bourlet Y, Buckingham M. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 1986;23(1):11–22. [Abstract] [Google Scholar]
  • Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990 Nov 29;348(6300):448–450. [Abstract] [Google Scholar]
  • Blondel A, Thillet J. A fast and convenient way to produce single stranded DNA from a phagemid. Nucleic Acids Res. 1991 Jan 11;19(1):181–181. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chardard D, Chesnel A, Gozé C, Dournon C, Berta P. Pw Sox-1: the first member of the Sox gene family in Urodeles. Nucleic Acids Res. 1993 Jul 25;21(15):3576–3576. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chevassus B, Devaux A, Chourrout D, Jalabert B. Production of YY rainbow trout males by self-fertilization of induced hermaphrodites. J Hered. 1988 Mar-Apr;79(2):89–92. [Abstract] [Google Scholar]
  • Conover DO, Kynard BE. Environmental sex determination: interaction of temperature and genotype in a fish. Science. 1981 Jul 31;213(4507):577–579. [Abstract] [Google Scholar]
  • Dalrymple MA, McGeoch DJ, Davison AJ, Preston CM. DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Res. 1985 Nov 11;13(21):7865–7879. [Europe PMC free article] [Abstract] [Google Scholar]
  • Denny P, Swift S, Brand N, Dabhade N, Barton P, Ashworth A. A conserved family of genes related to the testis determining gene, SRY. Nucleic Acids Res. 1992 Jun 11;20(11):2887–2887. [Europe PMC free article] [Abstract] [Google Scholar]
  • Denny P, Swift S, Connor F, Ashworth A. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J. 1992 Oct;11(10):3705–3712. [Europe PMC free article] [Abstract] [Google Scholar]
  • Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AH, Lovell-Badge R, Selwood L, Renfree MB, Cooper DW, Graves JA. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature. 1992 Oct 8;359(6395):531–533. [Abstract] [Google Scholar]
  • Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell. 1992 Apr 3;69(1):185–195. [Abstract] [Google Scholar]
  • Griffiths R. The isolation of conserved DNA sequences related to the human sex-determining region Y gene from the lesser black-backed gull (Larus fuscus). Proc Biol Sci. 1991 May 22;244(1310):123–128. [Abstract] [Google Scholar]
  • Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990 Jul 19;346(6281):245–250. [Abstract] [Google Scholar]
  • Harley VR, Jackson DI, Hextall PJ, Hawkins JR, Berkovitz GD, Sockanathan S, Lovell-Badge R, Goodfellow PN. DNA binding activity of recombinant SRY from normal males and XY females. Science. 1992 Jan 24;255(5043):453–456. [Abstract] [Google Scholar]
  • Hawkins JR, Taylor A, Berta P, Levilliers J, Van der Auwera B, Goodfellow PN. Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Hum Genet. 1992 Feb;88(4):471–474. [Abstract] [Google Scholar]
  • Hawkins JR, Taylor A, Goodfellow PN, Migeon CJ, Smith KD, Berkovitz GD. Evidence for increased prevalence of SRY mutations in XY females with complete rather than partial gonadal dysgenesis. Am J Hum Genet. 1992 Nov;51(5):979–984. [Europe PMC free article] [Abstract] [Google Scholar]
  • Iatrou K, Dixon GH. Protamine messenger RNA: its life history during spermatogenesis in rainbow trout. Fed Proc. 1978 Sep;37(11):2526–2533. [Abstract] [Google Scholar]
  • Jäger RJ, Anvret M, Hall K, Scherer G. A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature. 1990 Nov 29;348(6300):452–454. [Abstract] [Google Scholar]
  • Kleene KC, Distel RJ, Hecht NB. Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol. 1984 Sep;105(1):71–79. [Abstract] [Google Scholar]
  • Kleene KC, Distel RJ, Hecht NB. Nucleotide sequence of a cDNA clone encoding mouse protamine 1. Biochemistry. 1985 Jan 29;24(3):719–722. [Abstract] [Google Scholar]
  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991 May 9;351(6322):117–121. [Abstract] [Google Scholar]
  • Nerlov C, Ziff EB. Three levels of functional interaction determine the activity of CCAAT/enhancer binding protein-alpha on the serum albumin promoter. Genes Dev. 1994 Feb 1;8(3):350–362. [Abstract] [Google Scholar]
  • Payen EJ, Cotinot CY. Comparative HMG-box sequences of the SRY gene between sheep, cattle and goats. Nucleic Acids Res. 1993 Jun 11;21(11):2772–2772. [Europe PMC free article] [Abstract] [Google Scholar]
  • Phillips RB, Ihssen PE. Identification of sex chromosomes in lake trout (Salvelinus namaycush). Cytogenet Cell Genet. 1985;39(1):14–18. [Abstract] [Google Scholar]
  • Sadowski I, Ma J, Triezenberg S, Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature. 1988 Oct 6;335(6190):563–564. [Abstract] [Google Scholar]
  • Sakai M, Fujii-Kuriyama Y, Saito T, Muramatsu M. Closely related mRNA sequences of protamines in rainbow trout testis. J Biochem. 1981 Jun;89(6):1863–1868. [Abstract] [Google Scholar]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sawadogo M, Roeder RG. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4394–4398. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990 Jul 19;346(6281):240–244. [Abstract] [Google Scholar]
  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [Abstract] [Google Scholar]
  • Takamatsu N, Ohba K, Kondo J, Kondo N, Shiba T. Hibernation-associated gene regulation of plasma proteins with a collagen-like domain in mammalian hibernators. Mol Cell Biol. 1993 Mar;13(3):1516–1521. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thorgaard GH. Heteromorphic sex chromosomes in male rainbow trout. Science. 1977 May 20;196(4292):900–902. [Abstract] [Google Scholar]
  • Thorgaard GH. Sex chromosomes in the sockeye salmon: a Y-autosome fusion. Can J Genet Cytol. 1978 Sep;20(3):349–354. [Abstract] [Google Scholar]
  • Tucker PK, Lundrigan BL. Rapid evolution of the sex determining locus in Old World mice and rats. Nature. 1993 Aug 19;364(6439):715–717. [Abstract] [Google Scholar]
  • van de Wetering M, Oosterwegel M, van Norren K, Clevers H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 1993 Oct;12(10):3847–3854. [Europe PMC free article] [Abstract] [Google Scholar]
  • Whitfield LS, Lovell-Badge R, Goodfellow PN. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature. 1993 Aug 19;364(6439):713–715. [Abstract] [Google Scholar]
  • Wright EM, Snopek B, Koopman P. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res. 1993 Feb 11;21(3):744–744. [Europe PMC free article] [Abstract] [Google Scholar]
  • Yamashita S, Wada K, Horikoshi M, Gong DW, Kokubo T, Hisatake K, Yokotani N, Malik S, Roeder RG, Nakatani Y. Isolation and characterization of a cDNA encoding Drosophila transcription factor TFIIB. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2839–2843. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1128/mcb.15.7.3759

Supporting
Mentioning
Contrasting
6
69
0

Article citations


Go to all (46) article citations

Data