abstract |
A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000Å) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10Å on a native-quality oxide film of less than about 30Å grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film ("flash gate"), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector. |